Hash Tables

Computer Science S-111 Harvard University David G. Sullivan, Ph.D.

Data Dictionary Revisited

 We've considered several data structures that allow us to store and search for data items using their key fields:

data structure	searching for an item	inserting an item
a list implemented using an array	O(log n) using binary search	O(n)
a list implemented using a linked list	O(n) using linear search	O(n)
binary search tree		
balanced search trees (2-3 tree, B-tree, others)		

• We'll now look at hash tables, which can do better than $O(\log n)$.

Ideal Case: Searching = Indexing

- We would achieve optimal efficiency if we could treat the key as an index into an array.
- Example: storing data about members of a sports team
 - key = jersey number (some value from 0-99).
 - · class for an individual player's record:

```
public class Player {
    private int jerseyNum;
    private String firstName;
}
```

• store the player records in an array:

```
Player[] teamRecords = new Player[100];
```

return teamRecords[jerseyNum];

In such cases, search and insertion are O(1): public Player search(int jerseyNum) {

}

Hashing: Turning Keys into Array Indices

- In most real-world problems, indexing is not as simple as the sports-team example. Why?
 - •
 - •
 - .
- · To handle these problems, we perform hashing:
 - use a hash function to convert the keys into array indices
 "Sullivan" → 18
 - use techniques to handle cases in which multiple keys are assigned the same hash value
- The resulting data structure is known as a hash table.

Hash Functions

- A hash function defines a mapping from keys to integers.
- · We then use the modulus operator to get a valid array index.

key value
$$\implies$$
 hash function \implies integer $\stackrel{\%}{\implies}$ integer in [0, n - 1] (n = array length)

- Here's a very simple hash function for keys of lower-case letters:
 h(key) = ASCII value of first char ASCII value of 'a'
 - · examples:

```
h("ant") = ASCII for 'a' - ASCII for 'a' = 0

h("cat") = ASCII for 'c' - ASCII for 'a' = 2
```

- h(key) is known as the key's hash code.
- A *collision* occurs when items with different keys are assigned the same hash code.

Dealing with Collisions I: Separate Chaining

- Each position in the hash table serves as a *bucket* that can store multiple data items.
- Two options:
 - 1. each bucket is itself an array
 - · need to preallocate, and a bucket may become full
 - 2. each bucket is a linked list
 - items with the same hash code are "chained" together
 - · each "chain" can grow as needed

Dealing with Collisions II: Open Addressing

- When the position assigned by the hash function is occupied, find another open position.
- Example: "wasp" has a hash code of 22, but it ends up in position 23 because position 22 is occupied.
- We'll consider three ways of finding an open position – a process known as probing.
- · We also perform probing when searching.
 - · example: search for "wasp"
 - look in position 22
 - then look in position 23
 - need to figure out when to safely stop searching (more on this soon!)

"ant"
"cat"
"emu"
"wolf"
"wasp"
"yak"
"zebra"

Linear Probing

- Probe sequence: h(key), h(key) + 1, h(key) + 2, ..., wrapping around as necessary.
- Examples:
 - "ape" (h = 0) would be placed in position 1, because position 0 is already full.
 - "bear" (h = 1): try 1, 1 + 1, 1 + 2 open!
 - where would "zebu" end up?
- Advantage: if there is an open cell, linear probing will eventually find it.
- Disadvantage: get "clusters" of occupied cells that lead to longer subsequent probes.
 - probe length = the number of positions considered during a probe

Quadratic Probing

- Probe sequence: h(key), h(key) + 1², h(key) + 2², h(key) + 3², ..., wrapping around as necessary.
- Examples:
 - "ape" (h = 0): try 0, 0 + 1 open!
 "bear" (h = 1): try 1, 1 + 1, 1 + 4 open!
 "zebu"?
- Advantage: smaller clusters of occupied cells
- Disadvantage: may fail to find an existing open position. For example:

table size = 10 x = occupied
trying to insert a key with h(key) = 0
offsets of the probe sequence in italics

5	"bear"	
6		
7		
22	"wolf"	
23	"wasp"	
24	"yak"	
25	"zebra"	

"ant"

"ape"

"cat"

"emu"

2

3

Double Hashing

- · Use two hash functions:
 - h1 computes the hash code
 - h2 computes the increment for probing
 - probe sequence: h1, h1 + h2, h1 + 2*h2, ...
- Examples:
 - h1 = our previous h
 - h2 = number of characters in the string
 - "ape" (h1 = 0, h2 = 3): try 0, 0 + 3 open!
 - "bear" (h1 = 1, h2 = 4): try 1 open!
 - "zebu"?
- · Combines good features of linear and quadratic:
 - · reduces clustering
 - will find an open position if there is one, provided the table size is a prime number

```
0
     "ant"
 1
    "bear"
 2
     "cat"
 3
     "ape"
 4
     "emu"
 5
 6
 7
22
    "wolf"
23
     "wasp"
24
     "yak"
25 "zebra"
```

Removing Items Under Open Addressing

- Problematic example (using linear probing):
 - insert "ape" (h = 0): try 0, 0 + 1 open!
 - insert "bear" (h = 1): try 1, 1 + 1, 1 + 2 open!
 - · remove "ape"
 - search for "ape": try 0, 0 + 1 conclude not in table
 - search for "bear": try 1 conclude not in table, but "bear" is further down in the table!
- To fix this problem, distinguish between:
 - removed positions that previously held an item
 - empty positions that have never held an item

"ant"

- During probing, we don't stop if we see a removed position.
 ex: search for "bear": try 1 (removed), 1 + 1, 1 + 2 found!
- We can insert items in either empty or removed positions.

An Interface For Hash Tables

```
public interface HashTable {
   boolean insert(Object key, Object value);
   Queue<Object> search(Object key);
   Queue<Object> remove(Object key);
}
```

- insert() takes a key-value pair and returns:
 - true if the key-value pair can be added
 - false if it cannot be added (referred to as overflow)
- search() and remove() both take a key, and return a queue containing all of the values associated with that key.
 - example: an index for a book
 - key = word
 - values = the pages on which that word appears
 - return null if the key is not found

An Implementation Using Open Addressing

```
public class OpenHashTable implements HashTable {
    private class Entry {
        private Object key
        private LLQueue<Object> values;
    private Entry[] table;
                                                        'ant"
    private int probeType;
}
                                                      LLQueue
                                                       object
          table
                                                        'ape"
      probeType LINEAR
                           2
                                nu11
                                                      LLQueue
                                                       object
                           3
                                nu11
                                null
```

- · We use a private inner class for the entries in the hash table.
- We use an LLQueue for the values associated with a given key.

Empty vs. Removed

- · When we remove a key and its values, we:
 - leave the Entry object in the table
 - set the Entry object's key and values fields to null
 - example: after remove("ape"):

- Note the difference:
 - a truly empty position has a value of null in the table (example: positions 2, 3 and 4 above)
 - a removed position refers to an Entry object whose key and values fields are null (example: position 1 above)

Probing Using Double Hashing

- It is essential that we:
 - check for table[i] != null first. why?
 - call the equals method on key, not table[i].key. why?

Avoiding an Infinite Loop

• The while loop in our probe method could lead to an infinite loop.

```
while (table[i] != null && !key.equals(table[i].key)) {
   i = (i + h2) % table.length;
}
```

- When would this happen?
- We can stop probing after checking n positions (n = table size), because the probe sequence will just repeat after that point.
 - · for quadratic probing:

```
(h1 + n^2) % n = h1 % n

(h1 + (n+1)^2) % n = (h1 + n^2 + 2n + 1) % n = (h1 + 1) % n
```

· for double hashing:

```
(h1 + n*h2) \% n = h1 \% n

(h1 + (n+1)*h2) \% n = (h1 + n*h2 + h2) \% n = (h1 + h2) \% n
```

Avoiding an Infinite Loop (cont.) private int probe(Object key) { int i = h1(key); // first hash function int h2 = h2(key); // second hash function int numChecked = 1; // keep probing until we get an empty position or a match while (table[i] != null && !key.equals(table[i].key)) {

if (numChecked == table.length) {

i = (i + h2) % table.length;

return -1;

```
numChecked++;
}
return i;
}
```

Search and Removal

```
public LLQueue<Object> search(Object key) {
    // throw an exception if key == null
    int i = probe(key);
    if (i == -1 || table[i] == null) {
        return null;
    } else {
        return table[i].values;
    }
}
public LLQueue<Object> remove(Object key) {
    // throw an exception if key == null
    int i = probe(key);
    if (i == -1 || table[i] == null) {
        return null;
    LLQueue<Object> removedVals = table[i].values;
    table[i].key = null;
    table[i].values = null;
    return removedVals;
}
```

Insertion

- We begin by probing for the key.
- · Several cases:
 - 1. the key is already in the table (we're inserting a duplicate)
 → add the value to the values in the key's Entry
 - 2. the key is not in the table: three subcases:
 - a. encountered 1 or more removed positions while probing
 → put the (key, value) pair in the *first* removed position seen during probing, why?
 - b. no removed position; reached an empty position
 → put the (key, value) pair in the empty position
 - c. no removed position or empty position
 → overflow: return false

Tracing Through Some Examples

- · Start with the hash table at right with:
 - · double hashing
 - our earlier hash functions h1 and h2
- Perform the following operations:
 - insert "bear" (h1 = 1, h2 = 4):
 - insert "bison" (h1 = 1, h2 = 5):
 - insert "cow" (h1 = 2, h2 = 3):
 - delete "emu" (h1 = 4, h2 = 3):
 - search "eel" (h1 = 4, h2 = 3):
 - insert "bee" (h1 = ___, h2 = ___):

0	"ant"
1	
2	"cat"
3	
4	"emu"
5	"fox"
6	
7	
8	
9	
0	

Dealing with Overflow

- · Overflow = can't find a position for an item
- · When does it occur?
 - · linear probing:
 - · quadratic probing:
 - •
 - •
 - · double hashing:
 - if the table size is a prime number: same as linear
 - if the table size is not a prime number: same as quadratic
- To avoid overflow (and reduce search times), grow the hash table when the % of occupied positions gets too big.
 - problem: we need to rehash all of the existing items. why?

Implementing the Hash Function

- · Characteristics of a good hash function:
 - 1) efficient to compute
 - 2) uses the entire key
 - changing any char/digit/etc. should change the hash code
 - 3) distributes the keys more or less uniformly across the table
 - 4) must be a function!
 - · a key must always get the same hash code
- In Java, every object has a hashCode() method.
 - the version inherited from Object returns a value based on an object's memory location
 - · classes can override this version with their own

Hash Functions for Strings: version 1

- h_a = the sum of the characters' ASCII values
 - example: h_a ("eat") = 101 + 97 + 116 = 314
- All permutations of a given set of characters get the same code.
 - example: h_a("tea") = h_a("eat")
 - · could be useful in a Scrabble game
 - allow you to look up all words that can be formed from a given set of characters
- The range of possible hash codes is very limited.
 - example: hashing keys composed of 1-5 lower-case char's (padded with spaces)
 - 26*27*27*27*27 = over 13 million possible keys
 - smallest code = h_a ("a ") = 97 + 4*32 = 225 largest code = h_a ("zzzzz") = 5*122 = 610 = 385 codes

Hash Functions for Strings: version 2

• Compute a weighted sum of the ASCII values:

$$h_b = a_0 b^{n-1} + a_1 b^{n-2} + ... + a_{n-2} b + a_{n-1}$$

where $a_i = ASCII$ value of the ith character

b = a constant

n = the number of characters

- Multiplying by powers of b allows the positions of the characters to affect the hash code.
 - different permutations get different codes
- We may get arithmetic overflow, and thus the code may be negative. We adjust it when this happens.
- Java uses this hash function with b = 31 in the hashCode() method of the String class.

Hash Table Efficiency

- In the best case, search and insertion are O(1).
- In the worst case, search and insertion are linear.
 - open addressing: O(m), where m = the size of the hash table
 - separate chaining: O(n), where n = the number of keys
- With good choices of hash function and table size, complexity is generally better than O(log n) and approaches O(1).
- load factor = # keys in table / size of the table.
 To prevent performance degradation:
 - open addressing: try to keep the load factor < 1/2
 - separate chaining: try to keep the load factor < 1
- Time-space tradeoff: bigger tables have better performance, but they use up more memory.

Hash Table Limitations

- It can be hard to come up with a good hash function for a particular data set.
- The items are not ordered by key. As a result, we can't easily:
 - print the contents in sorted order
 - perform a range search (find all values between v1 and v2)
 - perform a rank search get the kth largest item

We can do all of these things with a search tree.

- A. 1, 2, 5
- B. 1, 6
- C. 1, 7, 2
- D. 1, 7, 3
- E. 1, 7, 2, 8

Extra Practice

- Start with the hash table at right with:
 - double hashing
 - h1(key) = ASCII of first letter ASCII of 'a'
 - h2(key) = key.length()
 - · shaded cells are removed cells
- What is the probe sequence for "baboon"?

```
(h1 = 1, h2 = 6) try: 1 \% 11 = 1

(1 + 6) \% 11 = 7

(1 + 2*6) \% 11 = 2

A. 1, 2, 5 (1 + 3*6) \% 11 = 8

empty cell, so stop probing
```

- B. 1,6
- C. 1, 7, 2
- D. 1, 7, 3
- E. 1, 7, 2, 8

Extra Practice

- · Start with the hash table at right with:
 - double hashing
 - h1(key) = ASCII of first letter ASCII of 'a'
 - h2(key) = key.length()
 - · shaded cells are removed cells
- · What is the probe sequence for "baboon"?

```
(h1 = 1, h2 = 6) try: 1 % 11 = 1

(1 + 6) % 11 = 7

(1 + 2*6) % 11 = 2

(1 + 3*6) % 11 = 8
```


"ant"

"ant"

"cat"

"emu"

1

2

3

5

6

7

8

9

10

- If we insert "baboon", in what position will it go?
 - A. 1
- B. 7
- C. 2
- D. 8

Extra Practice

"ant"

'baboon"

"cat"

"emu"

5

6

8

9

10

- Start with the hash table at right with:
 - double hashing
 - h1(key) = ASCII of first letter ASCII of 'a'
 - h2(key) = key.length()
 - · shaded cells are removed cells
- What is the probe sequence for "baboon"?

```
(h1 = 1, h2 = 6) try: 1 \% 11 = 1

(1 + 6) \% 11 = 7

(1 + 2*6) \% 11 = 2

(1 + 3*6) \% 11 = 8
```

• If we insert "baboon", in what position will it go?

A. 1 B. 7 C. 2 D. 8

the first removed position seen while probing