
Hash Tables

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 9, Part 4

Data Dictionary Revisited

• We've considered several data structures that allow us to store 
and search for data items using their key fields:

• We'll now look at hash tables, which can do better than O(log n).

data structure searching for an item inserting an item

a list implemented using 
an array

O(log n) 
using binary search

O(n) 

a list implemented using 
a linked list

O(n)
using linear search 

O(n)

binary search tree

balanced search trees 
(2-3 tree, B-tree, others)



Ideal Case: Searching = Indexing

• We would achieve optimal efficiency if we could treat
the key as an index into an array.

• Example: storing data about members of a sports team

• key = jersey number (some value from 0-99).

• class for an individual player's record:
public class Player {

private int jerseyNum;
private String firstName;
…

}

• store the player records in an array:
Player[] teamRecords = new Player[100];

• In such cases, search and insertion are O(1):
public Player search(int jerseyNum) {

return teamRecords[jerseyNum];
}

Hashing: Turning Keys into Array Indices

• In most real-world problems, indexing is not as simple as
the sports-team example. Why?

•

•

•

• To handle these problems, we perform hashing: 

• use a hash function to convert the keys into array indices
"Sullivan"  18

• use techniques to handle cases in which multiple keys 
are assigned the same hash value

• The resulting data structure is known as a hash table.



Hash Functions

• A hash function defines a mapping from keys to integers.

• We then use the modulus operator to get a valid array index.

key value integer         integer in [0, n – 1]
(n = array length)

• Here's a very simple hash function for keys of lower-case letters:
h(key) = ASCII value of first char – ASCII value of 'a'

• examples:
h("ant") = ASCII for 'a' – ASCII for 'a' = 0
h("cat") = ASCII for 'c' – ASCII for 'a' = 2

• h(key) is known as the key's hash code.

• A collision occurs when items with different keys are assigned 
the same hash code.

hash
function

%

Dealing with Collisions I: Separate Chaining

• Each position in the hash table serves as a bucket that can 
store multiple data items. 

• Two options:

1. each bucket is itself an array
• need to preallocate, and a bucket may become full

2. each bucket is a linked list
• items with the same hash code are "chained" together 
• each "chain" can grow as needed

0

1 null

2

3 null

… ...

"ant" "ape"

null

"cat"

null



Dealing with Collisions II: Open Addressing

• When the position assigned by the hash function is occupied, 
find another open position.

• Example: "wasp" has a hash code of 22, 
but it ends up in position 23 because 
position 22 is occupied.

• We'll consider three ways of finding an
open position – a process known as probing.

• We also perform probing when searching.

• example: search for "wasp"

• look in position 22

• then look in position 23

• need to figure out when to safely stop
searching (more on this soon!)

0 "ant"

1

2 "cat"

3

4 "emu"

5

6

7

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"

Linear Probing

• Probe sequence:  h(key), h(key) + 1, h(key) + 2, …, 
wrapping around as necessary.

• Examples:
• "ape" (h = 0) would be placed in position 1, 

because position 0 is already full.
• "bear" (h = 1): try 1, 1 + 1, 1 + 2 – open!
• where would "zebu" end up?

• Advantage: if there is an open cell, 
linear probing will eventually find it.

• Disadvantage: get "clusters" of occupied cells
that lead to longer subsequent probes.

• probe length = the number of positions 
considered during a probe

0 "ant"

1 "ape"

2 "cat"

3 "bear"

4 "emu"

5

6

7

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"



• Probe sequence:  h(key), h(key) + 12, h(key) + 22, h(key) + 32, …,
wrapping around as necessary.

• Examples:
• "ape" (h = 0): try 0, 0 + 1 – open! 
• "bear" (h = 1): try 1, 1 + 1, 1 + 4 – open!
• "zebu"? 

• Advantage: smaller clusters of occupied cells

• Disadvantage: may fail to find an existing 
open position. For example:
table size = 10
x = occupied

trying to insert a
key with h(key) = 0

offsets of the probe
sequence in italics

Quadratic Probing

0 x   

1 x 1 81

2

3

4 x 4 64

5 x   25

6 x 16 36

7

8

9 x 9 49

0 "ant"

1 "ape"

2 "cat"

3

4 "emu"

5 "bear"

6

7

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"

Double Hashing

• Use two hash functions:

• h1 computes the hash code

• h2 computes the increment for probing

• probe sequence:  h1, h1 + h2, h1 + 2*h2, …

• Examples:
• h1 = our previous h
• h2 = number of characters in the string
• "ape" (h1 = 0, h2 = 3): try 0, 0 + 3 – open! 
• "bear" (h1 = 1, h2 = 4): try 1 – open!
• "zebu"? 

• Combines good features of linear and quadratic:

• reduces clustering

• will find an open position if there is one,
provided the table size is a prime number

0 "ant"

1 "bear"

2 "cat"

3 "ape"

4 "emu"

5

6

7

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"



Removing Items Under Open Addressing

• Problematic example (using linear probing):
• insert "ape" (h = 0): try 0, 0 + 1 – open! 
• insert "bear" (h = 1): try 1, 1 + 1, 1 + 2 – open!
• remove "ape"
• search for "ape": try 0, 0 + 1 – conclude not in table
• search for "bear": try 1 – conclude not in table, 

but "bear" is further down in the table!

• To fix this problem, distinguish between:

• removed positions that previously held an item

• empty positions that have never held an item 

• During probing, we don't stop if we see a removed position.
ex: search for "bear": try 1 (removed), 1 + 1, 1 + 2 – found!

• We can insert items in either empty or removed positions.

0 "ant"

1

2 "cat"

3 "bear"

4 "emu"

5

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"

An Interface For Hash Tables
public interface HashTable {

boolean insert(Object key, Object value);
Queue<Object> search(Object key);
Queue<Object> remove(Object key);

}

• insert() takes a key-value pair and returns:

• true if the key-value pair can be added

• false if it cannot be added (referred to as overflow)

• search() and remove() both take a key, and return a queue 
containing all of the values associated with that key.

• example: an index for a book
• key = word
• values = the pages on which that word appears

• return null if the key is not found



An Implementation Using Open Addressing
public class OpenHashTable implements HashTable {

private class Entry {
private Object key;
private LLQueue<Object> values;
…

}
…
private Entry[] table;
private int probeType;

}

• We use a private inner class for the entries in the hash table. 

• We use an LLQueue for the values associated with a given key. 

0

1

2 null

3 null

4 null

… …

LLQueue
object

"ant"

"ape"
table

probeType LINEAR
LLQueue
object

Empty vs. Removed

• When we remove a key and its values, we:

• leave the Entry object in the table

• set the Entry object's key and values fields to null

• example: after remove("ape"):

• Note the difference:

• a truly empty position has a value of null in the table
(example: positions 2, 3 and 4 above)

• a removed position refers to an Entry object whose
key and values fields are null (example: position 1 above)

0

1

2 null

3 null

4 null

… …

LLQueue
object

"ant"

"ape"null

null

table

probeType LINEAR
LLQueue
object



Probing Using Double Hashing
private int probe(Object key) {

int i = h1(key);    // first hash function
int h2 = h2(key);   // second hash function

// keep probing until we get an empty position or match
while (table[i] != null && !key.equals(table[i].key)) {

i = (i + h2) % table.length;
}

return i;
}

• It is essential that we:

• check for table[i] != null first. why?

• call the equals method on key, not table[i].key. why?

Avoiding an Infinite Loop

• The while loop in our probe method could lead to an infinite loop.

while (table[i] != null && !key.equals(table[i].key)) {
i = (i + h2) % table.length;

}

• When would this happen?

• We can stop probing after checking n positions (n = table size), 
because the probe sequence will just repeat after that point.

• for quadratic probing: 
(h1 + n2) % n  =  h1 % n
(h1 + (n+1)2) % n  =  (h1 + n2 + 2n + 1) % n = (h1 + 1)%n

• for double hashing: 
(h1 + n*h2) % n  =  h1 % n
(h1 + (n+1)*h2) % n  =  (h1 + n*h2 + h2) % n = (h1 + h2)%n



Avoiding an Infinite Loop (cont.)

private int probe(Object key) {
int i = h1(key);    // first hash function
int h2 = h2(key);   // second hash function
int numChecked = 1;

// keep probing until we get an empty position or a match
while (table[i] != null && !key.equals(table[i].key)) {

if (numChecked == table.length) {
return -1;

}
i = (i + h2) % table.length;
numChecked++;

}

return i;
}

Search and Removal
public LLQueue<Object> search(Object key) {

// throw an exception if key == null
int i = probe(key);
if (i == -1 || table[i] == null) {

return null;
} else {

return table[i].values;
}

}

public LLQueue<Object> remove(Object key) {
// throw an exception if key == null
int i = probe(key);
if (i == -1 || table[i] == null) {

return null;
}

LLQueue<Object> removedVals = table[i].values;
table[i].key = null;
table[i].values = null;
return removedVals;

}



Insertion

• We begin by probing for the key.

• Several cases:

1. the key is already in the table (we're inserting a duplicate)

 add the value to the values in the key's Entry

2. the key is not in the table: three subcases:

a.  encountered 1 or more removed positions while probing
 put the (key, value) pair in the first removed position

seen during probing. why?

b.  no removed position; reached an empty position 
 put the (key, value) pair in the empty position

c.  no removed position or empty position
 overflow; return false

Tracing Through Some Examples

• Start with the hash table at right with:

• double hashing

• our earlier hash functions h1 and h2

• Perform the following operations:

• insert "bear" (h1 = 1, h2 = 4): 

• insert "bison" (h1 = 1, h2 = 5):

• insert "cow" (h1 = 2, h2 = 3):

• delete "emu" (h1 = 4, h2 = 3):

• search "eel" (h1 = 4, h2 = 3):

• insert "bee" (h1 = ___, h2 = ____):

0 "ant"

1

2 "cat"

3

4 "emu"

5 "fox"

6

7

8

9

10



Dealing with Overflow

• Overflow = can't find a position for an item

• When does it occur?

• linear probing: 

• quadratic probing:

•

•

• double hashing:
• if the table size is a prime number: same as linear
• if the table size is not a prime number: same as quadratic

• To avoid overflow (and reduce search times), grow the hash table 
when the % of occupied positions gets too big.

• problem: we need to rehash all of the existing items. why?

Implementing the Hash Function

• Characteristics of a good hash function:
1) efficient to compute

2) uses the entire key

• changing any char/digit/etc. should change the hash code

3) distributes the keys more or less uniformly across the table

4) must be a function!  

• a key must always get the same hash code

• In Java, every object has a hashCode() method.

• the version inherited from Object returns a value 
based on an object's memory location 

• classes can override this version with their own



Hash Functions for Strings: version 1

• ha = the sum of the characters' ASCII values

• example: ha("eat") = 101 + 97 + 116 = 314

• All permutations of a given set of characters get the same code.

• example: ha("tea") = ha("eat")

• could be useful in a Scrabble game

• allow you to look up all words that can be formed 
from a given set of characters

• The range of possible hash codes is very limited.

• example: hashing keys composed of 1-5 lower-case char's 
(padded with spaces)

• 26*27*27*27*27 = over 13 million possible keys

• smallest code = ha("a    ") = 97 + 4*32 = 225
largest code = ha("zzzzz") = 5*122 = 610

610 – 225 
= 385 codes

Hash Functions for Strings: version 2

• Compute a weighted sum of the ASCII values:

hb = a0bn–1 + a1bn–2 + … + an–2b + an–1

where ai = ASCII value of the ith character
b = a constant
n = the number of characters

• Multiplying by powers of b allows the positions of the characters 
to affect the hash code.

• different permutations get different codes

• We may get arithmetic overflow, and thus the code 
may be negative. We adjust it when this happens.

• Java uses this hash function with b = 31 in the hashCode()
method of the String class.



Hash Table Efficiency

• In the best case, search and insertion are O(1).

• In the worst case, search and insertion are linear.

• open addressing: O(m), where m = the size of the hash table
• separate chaining: O(n), where n = the number of keys

• With good choices of hash function and table size, 
complexity is generally better than O(log n) and approaches O(1).

• load factor = # keys in table / size of the table.
To prevent performance degradation:

• open addressing: try to keep the load factor < 1/2
• separate chaining: try to keep the load factor < 1

• Time-space tradeoff: bigger tables have better performance, 
but they use up more memory.

Hash Table Limitations

• It can be hard to come up with a good hash function for a 
particular data set.

• The items are not ordered by key. As a result, we can't easily:

• print the contents in sorted order
• perform a range search (find all values between v1 and v2)
• perform a rank search – get the kth largest item

We can do all of these things with a search tree.



Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(the sequence of positions seen during probing)

0 "ant"

1

2 "cat"

3

4 "emu"

5

6

7

8

9

10
A. 1, 2, 5

B. 1, 6

C. 1, 7, 2

D. 1, 7, 3

E. 1, 7, 2, 8 



Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6)    try: 1 % 11 = 1

(1 + 6) % 11 = 7
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8
empty cell, so stop probing

0 "ant"

1

2 "cat"

3

4 "emu"

5

6

7

8

9

10
A. 1, 2, 5

B. 1, 6

C. 1, 7, 2

D. 1, 7, 3

E. 1, 7, 2, 8 

Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6)    try: 1 % 11 = 1 

(1 + 6) % 11 = 7 
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8

• If we insert "baboon", in what position will it go? 

0 "ant"

1

2 "cat"

3

4 "emu"

5

6

7

8

9

10

A. 1 B. 7 C. 2 D.   8



Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6)    try: 1 % 11 = 1 

(1 + 6) % 11 = 7 
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8

• If we insert "baboon", in what position will it go? 

0 "ant"

1 "baboon"

2 "cat"

3

4 "emu"

5

6

7

8

9

10

A. 1 B. 7 C. 2 D.   8

the first removed position seen while probing


