
Heaps and Priority Queues

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 9, Part 3

Priority Queue

• A priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

• ("Ann Cudd", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

• use a higher priority for items that are "more important"

• Example application: scheduling a shared resource like the CPU

• give some processes/applications a higher priority,
so that they will be scheduled first and/or more often

• Key operations:

• insert: add an item (with a position based on its priority)
• remove: remove the item with the highest priority

• One way to implement a PQ efficiently is using a type of
binary tree known as a heap.

Complete Binary Trees

• A binary tree of height h is complete if:
• levels 0 through h - 1 are fully occupied
• there are no “gaps” to the left of a node in level h

• Complete:

• Not complete (= missing node):

Representing a Complete Binary Tree

• A complete binary tree has a simple array representation.

• The tree's nodes are stored in the array
in the order given by a level-order traversal.

• top to bottom, left to right

• Examples:

a[0]

a[1] a[2]

a[3] a[4] …

26 12 32 4 18 28

10 8 17 14 326

12

4 18

32

28

10

8

14 3

17

• The root node is in a[0]

• Given the node in a[i]:

• its left child is in a[2*i + 1]

• its right child is in a[2*i + 2]

• its parent is in a[(i - 1)/2]

(using integer division)

• Examples:

• the left child of the node in a[1] is in a[2*1 + 1] = a[3]

• the left child of the node in a[2] is in a[2*2 + 1] = a[5]

• the right child of the node in a[3] is in a[2*3 + 2] = a[8]

• the right child of the node in a[2] is in _________________

• the parent of the node in a[4] is in a[(4-1)/2] = a[1]

• the parent of the node in a[7] is in ___________________

Navigating a Complete Binary Tree in Array Form

a[0]

a[1]

a[4] …a[3]

a[7] a[8]

a[2]

a[5] a[6]

• Assume that the following array represents a complete tree:

What is the left child of 24?

26 12 32 24 18 28 47 10 9

0 1 2 3 4 5 6 7 8

Heaps

• Heap: a complete binary tree in which each interior node
is greater than or equal to its children

• examples:

• The largest value is always at the root of the tree.

• The smallest value can be in any leaf node - there’s no
guarantee about which one it will be.

• We're using max-at-top heaps.

• in a min-at-top heap, every interior node <= its children

28

16

12 8

20

5

18

8

3 7

2

12

7 10

Which of these is a heap?

• A. B. C.

D. more than one (which ones?)

E. none of them

28

16

12 18

20

5

18

8

3 7

2

12

7 10

2 5

Removing the Largest Item from a Heap

• Remove and return the item in the root node.

• In addition, need to move the largest remaining item to the root,
while maintaining a complete tree with each node >= children

• Algorithm:
1. make a copy of the largest item
2. move the last item in the heap

to the root
3. “sift down” the new root item

until it is >= its children (or it’s a leaf)
4. return the largest item

sift down
the 5:

28

20

16 8

12

5

5

20

16 8

12

20

5

16 8

12

20

16

5 8

12

Sifting Down an Item

• To sift down item x (i.e., the item whose key is x):
1. compare x with the larger of the item’s children, y
2. if x < y, swap x and y and repeat

• Other examples:
sift down
the 10:

sift down
the 7:

10

7

3 5

18

8 6

18

7

3 5

10

8 6

7

26

15 18

23

10

Inserting an Item in a Heap

• Algorithm:
1. put the item in the next available slot (grow array if needed)
2. “sift up” the new item

until it is <= its parent (or it becomes the root item)

• Example: insert 35
put it in
place:

sift it up: 20

16

5 8

20

16

5 8

35

16

5 8

20

16

5 8

12

20

16

5 8

12

35

12

35

35

12

20

12

Time Complexity of a Heap

• A heap containing n items has a height <= log2n. Why?

• Thus, removal and insertion are both O(log n).

• remove: go down at most log2n levels when sifting down;
do a constant number of operations per level

• insert: go up at most log2n levels when sifting up;
do a constant number of operations per level

• This means we can use a heap for a O(log n)-time priority queue.

5

16

14 20

8

1 26

Using a Heap for a Priority Queue

• Recall: a priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

• ("Ann Cudd", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

• use a higher priority for items that are "more important"

• To implement a PQ using a heap:

• order the items in the heap according to their priorities

• every item in the heap will have a priority >= its children

• the highest priority item will be in the root node

• get the highest priority item by calling heap.remove()!

Using a Heap to Sort an Array

• Recall selection sort: it repeatedly finds the smallest remaining
element and swaps it into place:

…

• It isn’t efficient, because it performs a linear scan to
find the smallest remaining element (O(n) steps per scan).

• Heapsort is a sorting algorithm that repeatedly finds the largest
remaining element and puts it in place.

• It is efficient, because it turns the array into a heap.

• it can find/remove the largest remaining in O(logn) steps!

0 1 2 3 4 5 6

5 16 8 14 20 1 26

0 1 2 3 4 5 6

1 5 8 14 20 16 26

0 1 2 3 4 5 6

1 16 8 14 20 5 26

Converting an Arbitrary Array to a Heap

• To convert an array (call it contents) with n items to a heap:
1. start with the parent of the last element:

contents[i], where i = ((n – 1) – 1)/2 = (n – 2)/2
2. sift down contents[i] and all elements to its left

• Example:

• Last element’s parent = contents[(7 – 2)/2] = contents[2].
Sift it down:

0 1 2 3 4 5 6

5 16 8 14 20 1 26
5

16

14 20

8

1 26

5

16

14 20

8

1 26

5

16

14 20

26

1 8

Converting an Array to a Heap (cont.)

• Next, sift down contents[1]:

• Finally, sift down contents[0]:

5

20

14 16

26

1 8

26

20

14 16

5

1 8

5

16

14 20

26

1 8

5

20

14 16

26

1 8

26

20

14 16

8

1 5

Heapsort

• Pseudocode:
heapSort(arr) {

// Turn the array into a max-at-top heap.
heap = new Heap(arr);

endUnsorted = arr.length - 1;
while (endUnsorted > 0) {

// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

}

Heapsort Example

• Sort the following array:

• Here’s the corresponding complete tree:

• Begin by converting it to a heap:

0 1 2 3 4 5 6

13 6 45 10 3 22 5

13

6

10 3

45

22 5

Heapsort Example (cont.)

• Here’s the heap in both tree and array forms:

• We begin looping:

while (endUnsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

0 1 2 3 4 5 6

45 10 22 6 3 13 5

45

10

6 3

22

13 5

endUnsorted: 6

Heapsort Example (cont.)

• Here’s the heap in both tree and array forms:

• Remove the largest item and put it in place:

45

10

6 3 13

22

10

6 3

13

5

22

10

6 3

13

5

0 1 2 3 4 5 6

45 10 22 6 3 13 5

45

10

6 3

22

13 5

endUnsorted: 6

toRemove: 45
0 1 2 3 4 5 6

22 10 13 6 3 5 5

endUnsorted: 6
largestRemaining: 45

0 1 2 3 4 5 6

22 10 13 6 3 5 45

endUnsorted: 5

22

5

5
remove()

copies 45;
moves 5
to root

remove()
sifts down 5;
returns 45

heapSort() puts 45 in place;
decrements endUnsorted

Heapsort Example (cont.)

22

10

6 3

13

5

13

10

6 3

5

13

10

6 3

5

toRemove: 22
0 1 2 3 4 5 6

13 10 5 6 3 5 45

endUnsorted: 5
largestRemaining: 22

5

13

10

6 3

5

10

6

3

5

10

6

3

5

toRemove: 13
0 1 2 3 4 5 6

10 6 5 3 3 22 45

endUnsorted: 4
largestRemaining: 13

0 1 2 3 4 5 6

10 6 5 3 13 22 45

endUnsorted: 3

3

copy 22;
move 5
to root

sift down 5;
return 22

copy 13;
move 3
to root

sift down 3;
return 13

put 13 in place;
decrement

0 1 2 3 4 5 6

13 10 5 6 3 22 45

endUnsorted: 4

put 22 in place;
decrement endUnsorted

Heapsort Example (cont.)

10

6

3

5

6

3 5

6

3 5

toRemove: 10
0 1 2 3 4 5 6

6 3 5 3 13 22 45

endUnsorted: 3
largestRemaining: 10

6

3 5

5

3

5

3

toRemove: 6
0 1 2 3 4 5 6

5 3 5 10 13 22 45

endUnsorted: 2
largestRemaining: 6

0 1 2 3 4 5 6

5 3 6 10 13 22 45

endUnsorted: 1

3

copy 6;
move 5
to root

sift down 5;
return 6

put 6 in place;
decrement

copy 10;
move 3
to root

sift down 3;
return 10

5

0 1 2 3 4 5 6

6 3 5 10 13 22 45

endUnsorted: 2

put 10 in place;
decrement

Heapsort Example (cont.)

5

3

3 3

toRemove: 5
0 1 2 3 4 5 6

3 3 6 10 13 22 45

endUnsorted: 1
largestRemaining: 5

0 1 2 3 4 5 6

3 5 6 10 13 22 45

endUnsorted: 0

3copy 5;
move 3
to root

sift down 3;
return 5

put 5 in place;
decrement

• And now we terminate the loop:

while (endUnsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

Efficiency of Heapsort

• Time complexity of going from a heap to a sorted array?

• It can be shown that turning an array into a heap takes O(n) steps.

• even better than O(n log n)!

• n/2 calls to siftDown(), most of which involve small subheaps

• Thus, total time complexity = ?

5

16

14 20

8

1 26

How Does Heapsort Compare?

• Heapsort matches mergesort for the best worst-case time
complexity, but it has better space complexity.

• Insertion sort is still best for arrays that are almost sorted.

• Quicksort is still typically fastest in the average case.

algorithm best case avg case worst case extra
memory

selection sort O(n2) O(n2) O(n2) O(1)

insertion sort O(n) O(n2) O(n2) O(1)

Shell sort O(n log n) O(n1.5) O(n1.5) O(1)

bubble sort O(n2) O(n2) O(n2) O(1)

quicksort O(n log n) O(n log n) O(n2) O(log n)
worst: O(n)

mergesort O(n log n) O(n log n) O(nlog n) O(n)

heapsort O(n log n) O(n log n) O(nlog n) O(1)

