Heaps and Priority Queues

Computer Science S-111
Harvard University

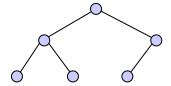
David G. Sullivan, Ph.D.

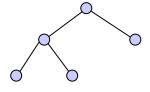
Priority Queue

- A priority queue (PQ) is a collection in which each item has an associated number known as a priority.
 - ("Ann Cudd", 10), ("Robert Brown", 15), ("Dave Sullivan", 5)
 - use a higher priority for items that are "more important"
- Example application: scheduling a shared resource like the CPU
 - give some processes/applications a higher priority, so that they will be scheduled first and/or more often
- · Key operations:
 - insert: add an item (with a position based on its priority)
 - remove: remove the item with the highest priority
- One way to implement a PQ efficiently is using a type of binary tree known as a heap.

Complete Binary Trees

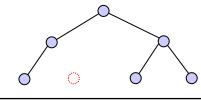
- A binary tree of height h is complete if:
 - levels 0 through *h* 1 are fully occupied
 - there are no "gaps" to the left of a node in level h
- Complete:

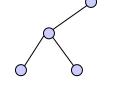




 \bigcirc

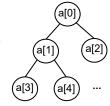
Not complete (= missing node):



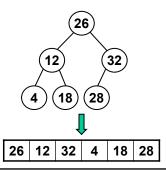


Representing a Complete Binary Tree

- A complete binary tree has a simple array representation.
- The tree's nodes are stored in the array in the order given by a level-order traversal.
 - · top to bottom, left to right



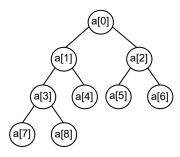
Examples:





Navigating a Complete Binary Tree in Array Form

- The root node is in a[0]
- Given the node in a[i]:
 - its left child is in a [2*i + 1]
 - its right child is in a [2*i + 2]
 - its parent is in a[(i 1)/2] (using integer division)



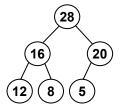
- · Examples:
 - the left child of the node in a[1] is in a[2*1 + 1] = a[3]
 - the left child of the node in a[2] is in a[2*2 + 1] = a[5]
 - the right child of the node in a[3] is in a[2*3 + 2] = a[8]
 - the right child of the node in a [2] is in ____
 - the parent of the node in a[4] is in a[(4-1)/2] = a[1]
 - the parent of the node in a [7] is in ___

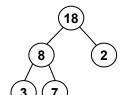
What is the left child of 24?

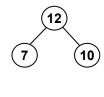
• Assume that the following array represents a complete tree:

Heaps

- Heap: a complete binary tree in which each interior node is greater than or equal to its children
 - examples:

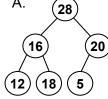




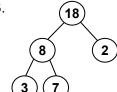


- The largest value is always at the root of the tree.
- The smallest value can be in any leaf node there's no guarantee about which one it will be.
- We're using max-at-top heaps.
 - in a *min-at-top* heap, every interior node <= its children

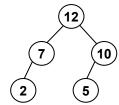
Which of these is a heap?



В.



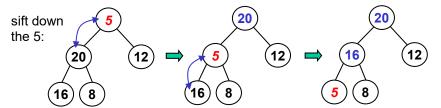
C.



- D. more than one (which ones?)
- E. none of them

Removing the Largest Item from a Heap

- · Remove and return the item in the root node.
- In addition, need to move the largest remaining item to the root, while maintaining a complete tree with each node >= children
- Algorithm:
 - 1. make a copy of the largest item
 - 2. move the last item in the heap to the root
 - 3. "sift down" the new root item until it is >= its children (or it's a leaf)
 - 4. return the largest item



12

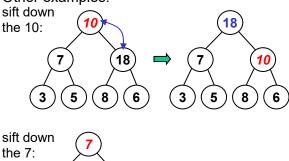
(20

Sifting Down an Item

- To sift down item *x* (i.e., the item whose key is *x*):
 - 1. compare x with the larger of the item's children, y
 - 2. if x < y, swap x and y and repeat
- · Other examples:

26

18

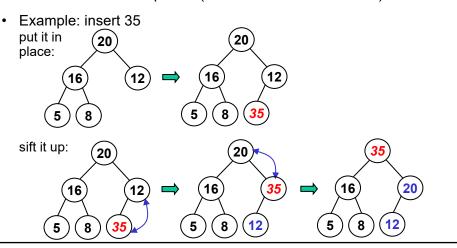


23

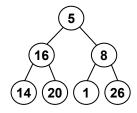
10

Inserting an Item in a Heap

- Algorithm:
 - 1. put the item in the next available slot (grow array if needed)
 - 2. "sift up" the new item until it is <= its parent (or it becomes the root item)



Time Complexity of a Heap



- A heap containing n items has a height <= log₂n. Why?
- Thus, removal and insertion are both O(log n).
 - remove: go down at most log₂n levels when sifting down;
 do a constant number of operations per level
 - insert: go up at most log₂n levels when sifting up; do a constant number of operations per level
- This means we can use a heap for a $O(\log n)$ -time priority queue.

Using a Heap for a Priority Queue

- Recall: a priority queue (PQ) is a collection in which each item has an associated number known as a priority.
 - ("Ann Cudd", 10), ("Robert Brown", 15), ("Dave Sullivan", 5)
 - use a higher priority for items that are "more important"
- To implement a PQ using a heap:
 - · order the items in the heap according to their priorities
 - every item in the heap will have a priority >= its children
 - the highest priority item will be in the root node
 - get the highest priority item by calling heap.remove()!

Using a Heap to Sort an Array

 Recall selection sort: it repeatedly finds the smallest remaining element and swaps it into place:

0	_1_	2	3	4	5	6
5	16	8	14	20	1	26
0	1	2	3	4	5	6
1	16	8	14	20	5	26
0	1	2	3	4	5	6
1	5	8	14	20	16	26

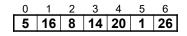
- -
- It isn't efficient, because it performs a linear scan to find the smallest remaining element (O(n) steps per scan).
- Heapsort is a sorting algorithm that repeatedly finds the *largest* remaining element and puts it in place.
- It is efficient, because it turns the array into a heap.
 - it can find/remove the largest remaining in O(log n) steps!

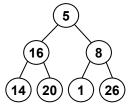
Converting an Arbitrary Array to a Heap

- To convert an array (call it contents) with n items to a heap:
 - 1. start with the parent of the last element:

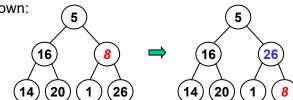
contents[i], where i = ((n-1)-1)/2 = (n-2)/2

- 2. sift down contents[i] and all elements to its left
- Example:



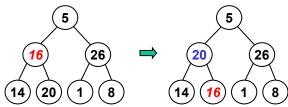


Last element's parent = contents[(7 - 2)/2] = contents[2].
 Sift it down:

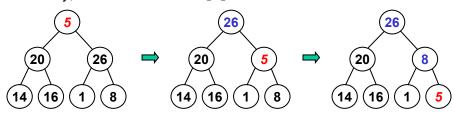


Converting an Array to a Heap (cont.)

• Next, sift down contents[1]:



• Finally, sift down contents[0]:



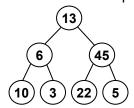
Heapsort

Pseudocode:

```
heapSort(arr) {
    // Turn the array into a max-at-top heap.
    heap = new Heap(arr);
    endUnsorted = arr.length - 1;
    while (endUnsorted > 0) {
        // Get the largest remaining element and put it
        // at the end of the unsorted portion of the array.
        largestRemaining = heap.remove();
        arr[endUnsorted] = largestRemaining;
        endUnsorted--;
    }
}
```

Heapsort Example

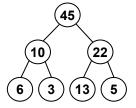
- Sort the following array: 0 1 2 3 4 5 6 13 6 45 10 3 22 5
- · Here's the corresponding complete tree:



• Begin by converting it to a heap:

Heapsort Example (cont.)

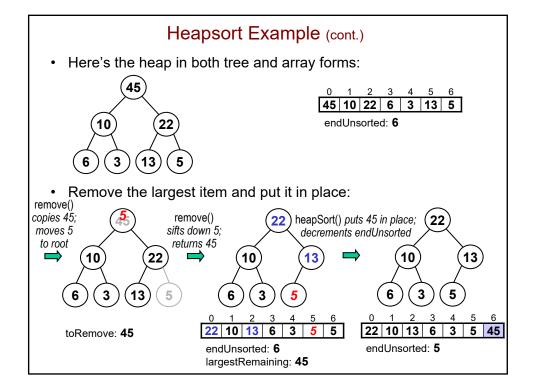
· Here's the heap in both tree and array forms:

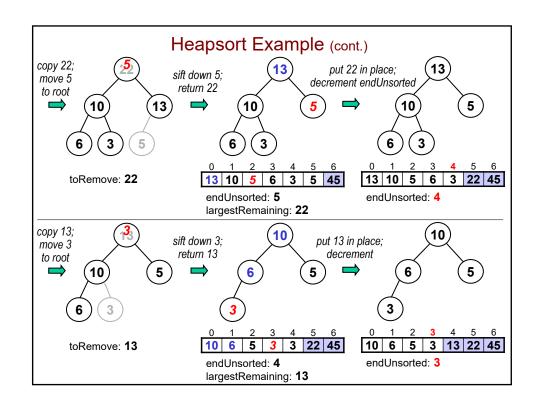


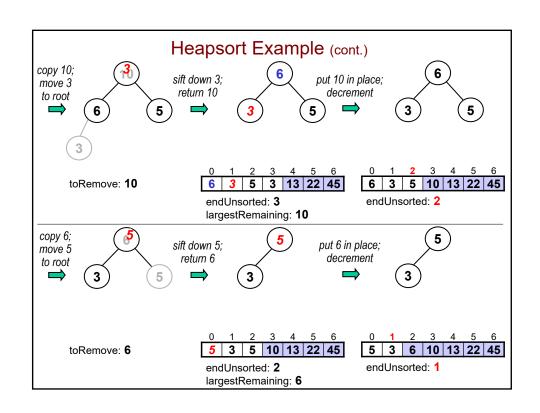
```
0 1 2 3 4 5 6
45 10 22 6 3 13 5
endUnsorted: 6
```

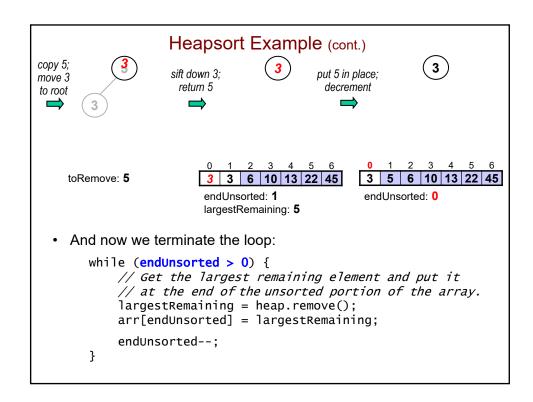
· We begin looping:

```
while (endUnsorted > 0) {
    // Get the largest remaining element and put it
    // at the end of the unsorted portion of the array.
    largestRemaining = heap.remove();
    arr[endUnsorted] = largestRemaining;
    endUnsorted--;
}
```

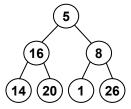








Efficiency of Heapsort



- · Time complexity of going from a heap to a sorted array?
- It can be shown that turning an array into a heap takes O(n) steps.
 - even better than O(n log n)!
 - n/2 calls to siftDown(), most of which involve small subheaps
- Thus, total time complexity = ?

How Does Heapsort Compare?

algorithm	best case	avg case	worst case	extra memory
selection sort	O(n ²)	O(n ²)	O(n ²)	0(1)
insertion sort	O(n)	O(n ²)	O(n ²)	0(1)
Shell sort	O(n log n)	O(n ^{1.5})	O(n ^{1.5})	0(1)
bubble sort	O(n ²)	O(n ²)	O(n ²)	0(1)
quicksort	O(n log n)	O(n log n)	O(n ²)	O(log n) worst: O(n)
mergesort	O(n log n)	O(n log n)	O(nlog n)	O(n)
heapsort	O(n log n)	O(n log n)	O(nlogn)	0(1)

- Heapsort matches mergesort for the best worst-case time complexity, but it has better space complexity.
- Insertion sort is still best for arrays that are almost sorted.
- Quicksort is still typically fastest in the average case.