Unit 9, Part 3

Heaps and Priority Queues

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Priority Queue

» A priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

* ("Ann Cudd", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

* use a higher priority for items that are "more important"

+ Example application: scheduling a shared resource like the CPU

* give some processes/applications a higher priority,
so that they will be scheduled first and/or more often

» Key operations:
* insert: add an item (with a position based on its priority)
* remove: remove the item with the highest priority

* One way to implement a PQ efficiently is using a type of
binary tree known as a heap.

Complete Binary Trees

» A binary tree of height h is complete if:
* levels 0 through h - 1 are fully occupied
+ there are no “gaps” to the left of a node in level h

+ Complete:

* Not complete (:: = missing node):

Representing a Complete Binary Tree

» A complete binary tree has a simple array representation.

+ The tree's nodes are stored in the array
in the order given by a level-order traversal.

* top to bottom, left to right

e@
®

Ge) @)
+ Examples:

(26) [10] 8 [17]14] 3]
@ I@ :

(10
0@@ oG

[26[12]32] 4 [18]28] (1) (3)

Navigating a Complete Binary Tree in Array Form

* Giventhe nodein al[i]:

- its left child is in a[2*i + 1] (o) (212)

* itsright childisin a[2*i + 2]

e itsparentisinal(i - 1)/2] @ @ @ @
(using integer division)
+ Examples: @ @

« the left child of the node in a[1] isina[2*1 + 1] = a[3]
the left child of the node in a[2] isin a[2*2 + 1] =a[5]
the right child of the node in a[3] isina[2*3 + 2] =a[8]

* The root node is in a[0]

the right child of the node in a[2] is in
the parent of the node in a[4] isina[(4-1)/2] =a[1]

the parent of the node in a[7] is in

What is the left child of 247

» Assume that the following array represents a complete tree:

0 1 2 3 4 5 6 7 8
|26 |12 |32]24 182847 |10] 9 |

Heaps

» Heap: a complete binary tree in which each interior node
is greater than or equal to its children

* examples:

(28) (18 (12
(1) (20) @ @O @©
12) (&) (® O@

+ The largest value is always at the root of the tree.

* The smallest value can be in any leaf node - there’s no
guarantee about which one it will be.

+ We're using max-at-top heaps.
* in a min-at-top heap, every interior node <= its children

Which of these is a heap?
- A ‘ea B. ‘ﬂ) C. ‘ﬂa
(18) (20 (8) @ (1) (19
(12)(1®) () @ 2 ©®

D. more than one (which ones?)

E. none of them

Removing the Largest Iltem from a Heap
< Remove and return the item in the root node.

* |n addition, need to move the largest remaining item to the root,
while maintaining a complete tree with each node >= children

+ Algorithm:

1. make a copy of the largest item @
2. move the last item in the heap

to the root @ ‘@

. “sift down” the new root item

until it is >= its children (or it’s a leaf) @ e @

4. return the largest item

st doun £5) (o O
(200 (12) '9 (12) = (16) (12
(18) (&) (19) (&) (5 (®)

w

Sifting Down an Item

+ To sift down item x (i.e., the item whose key is x):
1. compare x with the larger of the item’s children, y
2. if x <y, swap x and y and repeat

* Other examples:

neto: (10 (15
Biak
DOO®O @O®®

e (7
(20) ()
(19 (18) (1)

Inserting an Item in a Heap

» Algorithm:
1. put the item in the next available slot (grow array if needed)
2. “sift up” the new item
until it is <= its parent (or it becomes the root item)

+ Example: insert 35
putitin
place:

Time Complexity of a Heap

(5)
(1) (&)
19 @) (D @)

* A heap containing n items has a height <= log,n. Why?

* Thus, removal and insertion are both O(log n).

* remove: go down at most log,n levels when sifting down;
do a constant number of operations per level

+ insert: go up at most log,n levels when sifting up;
do a constant number of operations per level

» This means we can use a heap for a O(log n)-time priority queue.

Using a Heap for a Priority Queue

» Recall: a priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

* ("Ann Cudd", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

 use a higher priority for items that are "more important"

+ To implement a PQ using a heap:
» order the items in the heap according to their priorities
+ every item in the heap will have a priority >= its children
+ the highest priority item will be in the root node
+ get the highest priority item by calling heap. remove()!

Using a Heap to Sort an Array

* Recall selection sort: it repeatedly finds the smallest remaining
element and swaps it into place:

0 1 2 3 4 5 6
[5]16] 8 [14]20] 1 [26]

0 1 2 3 4 5 6
[7]16] 8 [14]20] 5 [26|
0 1 2 3 4 5 6
[71]5]8[14[20/16|26]|

* ltisn’t efficient, because it performs a linear scan to
find the smallest remaining element (O(n) steps per scan).

* Heapsort is a sorting algorithm that repeatedly finds the /largest
remaining element and puts it in place.

+ It js efficient, because it turns the array into a heap.
* it can find/remove the largest remaining in O(logn) steps!

Converting an Arbitrary Array to a Heap

* To convert an array (call it contents) with n items to a heap:
1. start with the parent of the last element:
contents[i],wherei = ((hn-1)-1)/2 = (nh-2)/2
2. sift down contents[i] and all elements to its left

e« Example: 0 1 2 3 4 5 6 e

[5[16] 8 [14[20] 1 |26]

. Last elements parent contents[(7 - 2)/2] —contents[Z]

980,

Converting an Array to a Heap (cont.)

* Next, sift down contents[1]:

(5) ()
(1) (20) = (0) (20
WWE W E

FlnaIIy sift down contents [0]

Sadn i

Heapsort

+ Pseudocode:

heapsort(arr) {

// Turn the array into a max-at-top heap.
heap = new Heap(arr);

endunsorted = arr.length - 1;

while (endunsorted > 0) {
// Get the largest remaining element and put 7t
// at the end of the unsorted portion of the array.
TargestRemaining = heap.remove();
arr[endunsorted] = TargestRemaining;

endunsorted--;

Heapsort Example

, 0O 1 2 3 4 5 6
* Sort the following array: 1376 [45[10] 3 [22] 5 |

» Here’s the corresponding complete tree:

(13
(6) (49
DIOIO

+ Begin by converting it to a heap:

Heapsort Example (cont.)

» Here’s the heap in both tree and array forms:
@ 0 1 2 3 4 5 6
(45[10]22] 6 [3 [13] 5 |
@ @ endUnsorted: 6

* We begin looping:

while (endunsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
TargestRemaining = heap.remove();
arr[endunsorted] = TargestRemaining;

endunsorted--;

Heapsort Example (cont.)

* Here’s the heap in both tree and array forms:
@ 0 1 2 3 4 5 &
[45]10]22| 6 | 3 [13]| 5|
@ @ endUnsorted: 6

* Remove the largest item and put it in place:
remove()

copies 45; remove() heapSort() puts 45 in place;
moves 5 sifts down 5; decrements endUnsorted
to root returns 45

0 1 2 3 4 5 6 0 1 2 3 4 5 6
toRemove: 45 [22[10[13] 6 [3 [5/5| [22[10/13]6 |3 | 5 [45]

endUnsorted: 6 endUnsorted: 5
largestRemaining: 45

Heapsort Example (cont.)

copy 22;
m%e 5 e sift down 5; i put 22t
to root return 22 ecremen

= (10)
0O

in place;
endUnsorted

0 1 2 3 4 5 6
toRemove: 22 |13/10] 56| 3| 5 |45]

0 1 2 3 4 5 6
|13]10] 5 [6 | 3 [22]45]

endUnsorted: 5
largestRemaining: 22

endUnsorted: 4

sift down 3;
return 13

=

put 13 in place;
decrement

=)

0 1 2 3 4 5 6
l10] 6 |5 3] 3 [22]45]

toRemove: 13

0 1 2 3 4 5 6
|10/ 6 | 5|3 [13]22]45]|

endUnsorted: 4
largestRemaining: 13

endUnsorted: 3

Heapsort Example (cont.)

S o

copy 10;
move 3 sift down 3; put 10 in place;
to root return 10 decrement

SRS

0 1 2 3 4 5 6
toRemove: 10 lel3]5]3][13]22]45]|

0 1 2 3 4 5 6
[6]3]5[10/13[22[45]

endUnsorted: 3
largestRemaining: 10

endUnsorted: 2

copy 6,
move 5 sift down 5; put 6 in place;
to root return 6 decrement

o8

S

0 1 2 3 4 5 6
toRemove: 6 I513]5[10[/13]22]45]|

0 1 2 3 4 5 6
I513]6[10[13]22]45]|

endUnsorted: 2
largestRemaining: 6

endUnsorted: 1

w5 @
move 3

to root

toRemove: 5

Heapsort Example (cont.)

sift down 3; @ put 5 in place; @

return 5 decrement

= =

0 1 2 3 4 5 6 0 1 2 3 4 5 6
[3]3]6[10[13[22[45] |3 [5]6[10[13][22]45]
endUnsorted: 1 endUnsorted: 0
largestRemaining: 5

* And now we terminate the loop:

while (endunsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
TargestRemaining = heap.remove();
arr[endunsorted] = TargestRemaining;

endunsorted--;

(18) (&)
19 @) (D) @)

+ Time complexity of going from a heap to a sorted array?

* Thus, total time complexity = ?

It can be shown that turning an array into a heap takes O(n) steps.
» even better than O(n log n)!

* n/2 calls to siftDown(), most of which involve small subheaps

Efficiency of Heapsort

How Does Heapsort Compare?

algorithm | best case | avg case |worst case extra
memory

selection sort Oo(n?) O(n?) O(n?) o

insertion sort Oo(n) O(n?) O(n?) o

Shell sort O(nlogn) o(nt-%) o(nt-%) o)

bubble sort on?) o(n?) o(n?) o
quicksort O(nlogn) | O(nlogn) o2 O(log n)
worst: O(n)

mergesort | O(nlogn) | O(n Togn) | O(nlogn) O()

heapsort | O(nTogn) | O(nlogn) | O(nlogn) o

Heapsort matches mergesort for the best worst-case time
complexity, but it has better space complexity.

Insertion sort is still best for arrays that are almost sorted.

» Quicksort is still typically fastest in the average case.

