
Search Trees

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 9, Part 2

Binary Search Trees

• Search-tree property: for each node k (k is the key):
• all nodes in k ’s left subtree are < k
• all nodes in k ’s right subtree are >= k

• Our earlier binary-tree example is
a search tree:

• With a search tree, an inorder traversal visits the nodes in order!

• in order of increasing key values

26

12 32

4 18 38

7

k

< k

< 26  26

< 12

k

 12

Searching for an Item in a Binary Search Tree

• Algorithm for searching for an item with a key k:

if k == the root node’s key, you’re done
else if k < the root node’s key, search the left subtree
else search the right subtree

• Example: search for 7

26

12 32

4 18 38

7

Implementing Binary-Tree Search
public class LinkedTree { // Nodes have keys that are ints

…
private Node root;

public LLList search(int key) { // "wrapper method"
Node n = searchTree(root, key); // get Node for key
if (n == null) {

return null; // no such key
} else {

return n.data; // return list of values for key
}

}

private static Node searchTree(Node root, int key) {
if () {

} else if () {

} else if () {

} else {

}
}

two base cases
(order matters!)

two
recursive cases

Inserting an Item in a Binary Search Tree

• public void insert(int key, Object data)

will add a new (key, data) pair to the tree

• Example 1: a search tree containing student records

• key = the student's ID number (an integer)

• data = a string with the rest of the student record

• we want to be able to write client code that looks like this:
LinkedTree students = new LinkedTree();
students.insert(23, "Jill Jones,sophomore,comp sci");
students.insert(45, "Al Zhang,junior,english");

• Example 2: a search tree containing scrabble words

• key = a scrabble score (an integer)

• data = a word with that scrabble score
LinkedTree tree = new LinkedTree();
tree.insert(4, "lost");

Inserting an Item in a Binary Search Tree (cont.)

• To insert an item (k, d),
we start by searching for k.

• If we find a node with key k, we add
d to the list of data values for that node.

• example: tree.insert(4, "sail")

• If we don’t find k, the last node seen
in the search becomes the parent P
of the new node N.

• if k < P’s key, make N the left child of P

• else make N the right child of P

• Special case: if the tree is empty,
make the new node the root of the tree.

• Important: The resulting tree is still a search tree!

26

12 32

4 18 38

7 35

P

example:
tree.insert(35,

"photooxidizes")

N

Implementing Binary-Tree Insertion

• We'll implement part of the insert() method together.

• We'll use iteration rather than recursion.

• Our method will use two references/pointers:

• trav: performs the traversal down
to the point of insertion

• parent: stays one behind trav

• like the trail reference that we
sometimes use when traversing
a linked list

26

12 32

4 18 38

7

parent

trav

Implementing Binary-Tree Insertion
public void insert(int key, Object data) {

Node parent = null;
Node trav = root;
while (trav != null) {

if (trav.key == key) {
trav.data.addItem(data, 0);
return;

}
// what should go here?

}
Node newNode = new Node(key, data);
if (root == null) { // the tree was empty

root = newNode;
} else if (key < parent.key) {

parent.left = newNode;
} else {

parent.right = newNode;
}

}

26

12 32

4 18 38

7

parent

trav
insert 35:

Deleting Items from a Binary Search Tree

• Three cases for deleting a node x

• Case 1: x has no children.
Remove x from the tree by setting its parent’s reference to null.

ex: delete 4

• Case 2: x has one child.
Take the parent’s reference to x and make it refer to x’s child.

ex: delete 12

26

12 32

4 18 38

26

12 32

18 38

26

12 32

18 38

26

18 32

38

Deleting Items from a Binary Search Tree (cont.)

• Case 3: x has two children

• we can't give both children to the parent. why?

• instead, we leave x's node where it is, and we replace its
key and data with those from another node

• the replacement must maintain the search-tree inequalities

ex:
delete 12

two options: which ones?26

12 32

4 18 38

7 20152

Deleting Items from a Binary Search Tree (cont.)

• Case 3: x has two children (continued):

• replace x's key and data with those from the smallest node
in x’s right subtree—call it y

• we then delete y
• it will either be a leaf node or will have one right child. why?

• thus, we can delete it using case 1 or 2

ex: delete 12

x

y

copy node y's
contents into
node x

delete
node y

12

4 18

2015

…

… …

x

y

15

18

2015

…

x15

18

20

…

4

… …

4

… …

Which Node Would Be Used To Replace 9?

9

4

3 8

5

17

10

1

7

25

15 36

A. 4

B. 8

C. 10

D. 15

E. 17

Implementing Deletion
public LLList delete(int key) {

// Find the node and its parent.
Node parent = null;
Node trav = root;
while (trav != null && trav.key != key) {

parent = trav;
if (key < trav.key) {

trav = trav.left;
} else {

trav = trav.right;
}

}

// Delete the node (if any) and return the removed items.
if (trav == null) { // no such key

return null;
} else {

LLList removedData = trav.data;
deleteNode(trav, parent); // call helper method
return removedData;

}
}

26

18 45

35

30

50

15

delete 26:

trav
parent

Implementing Case 3
private void deleteNode(Node toDelete, Node parent) {

if (toDelete.left != null && toDelete.right != null) {
// Find a replacement – and
// the replacement's parent.
Node replaceParent = toDelete;

// Get the smallest item
// in the right subtree.
Node replace = toDelete.right;
// what should go here?

// Replace toDelete's key and data
// with those of the replacement item.
toDelete.key = replace.key;
toDelete.data = replace.data;

// Recursively delete the replacement
// item's old node. It has at most one
// child, so we don't have to
// worry about infinite recursion.
deleteNode(replace, replaceParent);

} else {
...

}

26

18 45

35

toDelete

30

Implementing Cases 1 and 2
private void deleteNode(Node toDelete, Node parent) {

if (toDelete.left != null && toDelete.right != null) {
...

} else {
Node toDeleteChild;
if (toDelete.left != null)

toDeleteChild = toDelete.left;
else

toDeleteChild = toDelete.right;
// Note: in case 1, toDeleteChild
// will have a value of null.

if (toDelete == root)
root = toDeleteChild;

else if (toDelete.key < parent.key)
parent.left = toDeleteChild;

else
parent.right = toDeleteChild;

}
}

30

18 45

35

toDelete

parent

30

toDeleteChild

Recall: Path, Depth, Level, and Height

• There is exactly one path (one sequence of edges) connecting
each node to the root.

• depth of a node = # of edges on the path from it to the root

• Nodes with the same depth form a level of the tree.

• The height of a tree is the maximum depth of its nodes.
• example: the tree above has a height of 2

depth = 2

level 1

level 0

level 2

Efficiency of a Binary Search Tree

• For a tree containing n items, what is the efficiency
of any of the traversal algorithms?

• you process all n of the nodes

• you perform O(1) operations on each of them

• Search, insert, and delete all have the same time complexity.

• insert is a search followed by O(1) operations

• delete involves either:

• a search followed by O(1) operations (cases 1 and 2)

• a search partway down the tree for the item,
followed by a search further down for its replacement,
followed by O(1) operations (case 3)

Efficiency of a Binary Search Tree (cont.)

• Time complexity of searching:

• best case:

• worst case:

• you have to go all the way down to level h
before finding the key or realizing it isn't there

• along the path to level h, you process h + 1 nodes

• average case:

• What is the height of a tree containing n items?

Balanced Trees

• A tree is balanced if, for each of its nodes, the node’s subtrees
have the same height or have heights that differ by 1.
• example:

• 26: both subtrees have a height of 1

• 12: left subtree has height 0
right subtree is empty (height = -1)

• 32: both subtrees have a height of 0

• all leaf nodes: both subtrees are empty

• For a balanced tree with n nodes, height = O(log n)

• each time that you follow an edge down the longest path,
you cut the problem size roughly in half!

• Therefore, for a balanced binary search tree, the worst case
for search / insert / delete is O(h) = O(log n)

• the "best" worst-case time complexity

26

12 32

4 3830

• Extreme case: the tree is equivalent to a linked list

• height = n - 1

• Therefore, for a unbalanced
binary search tree, the worst case
for search / insert / delete is O(h) = O(n)

• the "worst" worst-case time complexity

• We’ll look next at search-tree variants
that take special measures to ensure balance.

4

12

What If the Tree Isn't Balanced?

26

32

36

38

2-3 Trees

• A 2-3 tree is a balanced tree in which:
• all nodes have equal-height subtrees (perfect balance)
• each node is either

• a 2-node, which contains one data item and 0 or 2 children

• a 3-node, which contains two data items and 0 or 3 children

• the keys form a search tree

• Example:

2-node: 3-node:

28 61

10 40

3 14 20 34 51

77 90

68 80 87 93 97

<k k

k

<k1
k1
<k2

k1 k2

k2

Search in 2-3 Trees

• Algorithm for searching for an item with a key k:

if k == one of the root node’s keys, you’re done
else if k < the root node’s first key

search the left subtree
else if the root is a 3-node and k < its second key

search the middle subtree
else

search the right subtree

• Example: search for 87

28 61

10 40

3 34 51

77 90

68 80 87 93 9714 20

<k1
k1
<k2

k1 k2

k2

50

Insertion in 2-3 Trees

• Algorithm for inserting an item with a key k:

search for k, but don’t stop until you hit a leaf node
let L be the leaf node at the end of the search
if L is a 2-node

add k to L, making it a 3-node

else if L is a 3-node
split L into two 2-nodes containing the items with the

smallest and largest of: k, L’s 1st key, L’s 2nd key
the middle item is “sent up” and inserted in L’s parent

example: add 52

50

54 70
… …

50 54

52 70
…

52 54 70

10

3 20

10

3 14 20

Example 1: Insert 8

• Search for 8:

• Add 8 to the leaf node, making it a 3-node:

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

10 40

34 51

77 90

68 93 9714 20 80 873 8

17
14 20

Example 2: Insert 17

• Search for 17:

• Split the leaf node, and send up the middle of 14, 17, 20
and insert it the leaf node’s parent:

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

10 40

3 34 51

…

28 61

40

3 34 51

…
10 17

14 20

Example 3: Insert 92

• In which node will we initially try to insert it?

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

Example 3: Insert 92

• Search for 92:

• Split the leaf node, and send up the middle of 92, 93, 97
and insert it the leaf node’s parent:

• In this case, the leaf node’s parent is also a 3-node, so we
need to split is as well…

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

40

34 51

77 90

68 9780 87

…

9392 92 97

28 61

40

34 51

77 90

68 80 87

…
93

• We split the [77 90] node and we send up the middle of 77, 90, 93:

• We try to insert it in the root node, but the root is also full!

• Then we split the root,
which increases the
tree’s height by 1, but
the tree is still balanced.

• This is only case in which
the tree’s height increases.

Example 3 (cont.)

92 97

28 61

40

34 51 68 80 87

…
9377 90

92 97

28 61

40

34 51 68 80 87

…
77 93

90

92 97

40

34 51 68 80 87

…
77 93

9028

61

Efficiency of 2-3 Trees

• A 2-3 tree containing n items has a height h <= log2n.

• Thus, search and insertion are both O(log n).

• search visits at most h + 1 nodes

• insertion visits at most 2h + 1 nodes:

• starts by going down the full height

• in the worst case, performs splits all the way back up to the root

• Deletion is tricky – you may need to coalesce nodes!
However, it also has a time complexity of O(log n).

• Thus, we can use 2-3 trees for a O(log n)-time data dictionary!

External Storage

• The balanced trees that we've covered don't work well if you
want to store the data dictionary externally – i.e., on disk.

• Key facts about disks:

• data is transferred to and from disk in units called blocks,
which are typically 4 or 8 KB in size

• disk accesses are slow!

• reading a block takes ~10 milliseconds (10-3 sec)

• vs. reading from memory, which takes ~10 nanoseconds
• in 10 ms, a modern CPU can perform millions of operations!

B-Trees

• A B-tree of order m is a tree in which each node has:
• at most 2m entries (and, for internal nodes, 2m + 1 children)
• at least m entries (and, for internal nodes, m + 1 children)
• exception: the root node may have as few as 1 entry
• a 2-3 tree is essentially a B-tree of order 1

• To minimize the number of disk accesses, we make m
as large as possible.

• each disk read brings in more items

• the tree will be shorter (each level has more nodes),
and thus searching for an item requires fewer disk reads

• A large value of m doesn’t make sense for a memory-only tree,
because it leads to many key comparisons per node.

• These comparisons are less expensive than accessing the disk,
so large values of m make sense for on-disk trees.

Example: a B-Tree of Order 2

• m = 2: at most 2m = 4 items per node (and at most 5 children)
at least m = 2 items per node (and at least 3 children)
(except the root, which could have 1 item)

• The above tree holds the same keys this 2-3 tree:

• We used the same order of insertion to create both trees:
51, 3, 40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14

20 40 68 90

3 10 14 28 34 93 9751 61 77 80 87

28 61

10 40

3 14 20 34 51

77 90

68 80 87 93 97

Search in B-Trees

• Similar to search in a 2-3 tree.

• Example: search for 87

20 40 68 90

3 10 14 28 34 93 9751 61 77 80 87

Insertion in B-Trees

• Similar to insertion in a 2-3 tree:

search for the key until you reach a leaf node

if a leaf node has fewer than 2m items, add the item
to the leaf node

else split the node, dividing up the 2m + 1 items:

the smallest m items remain in the original node

the largest m items go in a new node

send the middle entry up and insert it (and a pointer to
the new node) in the parent

• Example of an insertion without a split: insert 13

20 40 68 90

3 10 14 28 34 51 61

… …
20 40 68 90

3 10 13 14 28 34 51 61

… …

Splits in B-Trees

• Insert 5 into the result of the previous insertion:

• The middle item (the 10) is sent up to the root.
The root has no room, so it is also split, and a new root is formed:

• Splitting the root increases the tree’s height by 1, but the tree
is still balanced. This is only way that the tree’s height increases.

• When an internal node is split, its 2m + 2 pointers are split evenly
between the original node and the new node.

20 40 68 90

28 34 51 61

… …
20 40 68 90

3 5 13 14 28 34 51 61

… …
3 10 13 145

10
m = 2

40

20 40 68 90

3 5 13 14 28 34 51 61

… …
10 20 68 90

28 34 51 61

… …
10

3 5 13 14

Analysis of B-Trees

• All internal nodes have at least m children (actually, at least m+1).

• Thus, a B-tree with n items has a height <= logmn, and
search and insertion are both O(logmn).

• As with 2-3 trees, deletion is tricky, but it’s still logarithmic.

20 40 68 90

3 10 14 28 34 93 9751 61 77 80 87

Search Trees: Conclusions

• Binary search trees can be O(logn), but they can degenerate
to O(n) running time if they are out of balance.

• 2-3 trees and B-trees are balanced search trees that
guarantee O(logn) performance.

• When data is stored on disk, the most important performance
consideration is reducing the number of disk accesses.

• B-trees offer improved performance for on-disk data dictionaries.

