Unit 7, Part 2

Sorting Il
Divide-and-Conquer Algorithms,
Distributive Sorting

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Quicksort

» Like bubble sort, quicksort uses an approach based on swapping
out-of-order elements, but it's more efficient.

* Arecursive, divide-and-conquer algorithm:

» divide: rearrange the elements so that we end up with
two subarrays that meet the following criterion:

each element in left array <= each element in right array

example:

[12] 814 4|6 [13] == [6 [8] 4]14]12]13]

» conquer: apply quicksort recursively to the subarrays,
stopping when a subarray has a single element

» combine: nothing needs to be done, because of the way
we formed the subarrays

Partitioning an Array Using a Pivot

* The process that quicksort uses to rearrange the elements
is known as partitioning the array.

* It uses one of the values in the array as a pivot,
rearranging the elements to produce two subarrays:
« left subarray: all values <= pivot } equivalent to the criterion
* right subarray: all values >= pivot | 07 the previous page.

7 15| 4 9 6 [18] 9 |12
l partition using a pivot of 9

7191469 18|15 |12

all values <=9 all values >=9

» The subarrays will not always have the same length.

» This approach to partitioning is one of several variants.

Possible Pivot Values

« First element or last element
* risky, can lead to terrible worst-case behavior
» especially poor if the array is almost sorted

[4]8]14]12] 6 |18| = [4] 8 |14]|12] 6

18

pivot = 18
+ Middle element (what we will use)
+ Randomly chosen element

« Median of three elements
* left, center, and right elements
 three randomly selected elements

+ taking the median of three decreases the probability of
getting a poor pivot

Partitioning an Array: An Example
first Tast

arr » 7 (15| 4| 9|6 18| 9 |12
pivot = 9
« Maintain indices 1 and j, starting them “outside” the array:

i=first-1 1
j=last+1 71151 4| 9|6 18] 9 |12

* Find “out of place” elements:
* increment i until arr[i] >= pivot
» decrement j until arr[j] <= pivot

1‘
711514196 18] 9 |12

.

« Swaparr[i] andarr[j]:
i J
71914 |9 |6 |18|15|12

Partitioning Example (cont.)

i j

from prev. page: 719141 9)|6 [18|15|12
i 3

« Find: 71914 |9 |6 [18(15|12
i

+ Swap: 7194 |69 [18(15|12
j i

* Find: 7194 |69 [18(15|12

and now the indices have crossed, so we return j.

« Subarrays: left = from first to j, right= from j+1 to Tast

first j i Tast
719146 |9 |18]15|12

« Start

(pivot = 13):

* Find:

* Swap:

* Find:

and now the indices are equal, so we

* Subarrays:

.i

Partitioning Example 2

24| 5 (2 | 13|18 | 4 |20|19
i J
2415 (2 |13|18| 4 |20|19
i j
4 |5 |2 (1318242019
i3]
4 |5 |2 (1318242019
return j.
i3]
4 |5 |2 (13118242019

Partitioning Example 3 (done together)

+ Start
(pivot = 5):

* Find:

i

4

14

7

5

2

19

26

6

14

19

26

Partitioning Example 4

. Start i j
(pivot = 15): 8 |10 7 |z5(20| 9 | 6 |18
- Find: 8 |10 7 1520 9 | 6 |18

partition() Helper Method

private static int partition(int[] arr, int first, int last)
{

int pivot = arr[(first + Tast)/2];

int i = first - 1; // index going left to right

int j = last + 1; /7 index going right to Teft

while (true) {

do {
i+
} while (arr[i] < pivot);
do {
} while (arr[j] > pivot);
if (< 3) {
swap(arr, i, j);
} else {
return j; /7 arr[j] = end of left array
}
}
} first last

Implementation of Quicksort

public static void quickSort(int[] arr) { // "wrapper" method
if (arr.length <= 1) {
return;
}
gsort(arr, 0, arr.length - 1);
3

private static void gSort(int[] arr, int first, int last) {
int split = partition(arr, first, last);

if (first < split) { // 7f left subarray has 2+ values
gsort(arr, first, split); // sort it recursively!

}
if (last > split + 1) { /7 1F right has 2+ values
gsort(arr, split + 1, last); // sort it/
}
} // note: base case is when neither call is made!
split
first 3) last

71914169 (18|15|12

A Quick Review of Logarithms

« Tlogyn = the exponent to which b must be raised to get n
e logyn = p if b? = n

+ examples: 1o0g,8 = 3 because 2° = 8
109,,10000 = 4 because 10* = 10000

* Another way of looking at Tog,n:
+ let's say that you repeatedly divide n by 2 (using integer division)
» log,n is an upper bound on the number of divisions
needed to reach 1
+ example: Tog,18 is approx. 4.17
18/2 = 9 9/2 = 4 4/2 = 2 2/2 =1

A Quick

O(1ogn) algorithm —

Review of Logs (cont.)

one in which the number of operations

is proportional to Tog,n for any base b

» Tlogy,n grows much more slowly than n

Tog,n

2 1

1024 (1K) 10
1024%1024 (1m) 20
1024*1024*1024 (1G) 30

Thus, for large values

of n:

* a O(log n) algorithm is much faster than a O(n) algorithm

« logn << n

* a O(nlog n) algorithm is much faster than a O(n?) algorithm

*n*logn <<

n*n it's also faster thana O(n?->)

nlogn << n? algorithm like Shell sort

Time Analysis of Quicksort

Partitioning an array of length n requires approx. n comparisons.

* most elements are

best case: partitioning
* repeated recursive

compared with the pivot once; a few twice

always divides the array in half
calls give:

comparisons

| n | n
n/2 n/2 2¥(n/2) =n
(n/4] [n/4] [n/4] [n/4] 4*(n/4) = n

e
0

there are
e C(n) =7
Similarly, M(n) and

at each "row" except the bottom, we perform n comparisons

rows that include comparisons

running time are both

Time Analysis of Quicksort (cont.)

* worst case: pivot is always the smallest or largest element
* one subarray has 1 element, the otherhas n - 1

* repeated recursive calls give: comparisons

e C(n) = > i= 0(n2). wm(n) and runtime are also 0(n?).
iz2

» average case is harder to analyze
« C(n) >nTog,n, butit’s still 0(nTogn)

Mergesort

+ The algorithms we've seen so far have sorted the array in place.
+ use only a small amount of additional memory

» Mergesort requires an additional temporary array
of the same size as the original one.

+ it needs O(n) additional space, where n is the array size

+ ltis based on the process of merging two sorted arrays.
* example:

[2] 8 |14]24]
N
HEEECe

[2] 5] 78] 9]11]14]24]

Merging Sorted Arrays

» To merge sorted arrays A and B into an array C, we maintain
three indices, which start out on the first elements of the arrays:

;
Al 2|8 [14]24] k

] el [[T [|

Bl 5| 7] 9] 11]

» We repeatedly do the following:
» compare Afi] and BJ[j]
» copy the smaller of the two to C[k]
* increment the index of the array whose element was copied
* increment k
1‘
Al 2] 8 [14]24] K

J el [[[[[[|

B 5| 7] 9] 11]

Merging Sorted Arrays (cont.)
+ Starting point:

;
Al 2] 8 [14]24] k

] cl [[T] |

B| 5] 7] 9] 11]

» After the fjrst copy:
1

Al 2] 8 |14]24] K

J el [[[[[[|

Bl 5| 7] 9] 11]

* After the second copy:
1

Al 2] 8 [14]24] K

J clafs] [[[[[|

Bl 5| 7] 9 11]

Merging Sorted Arrays (cont.)
» After the t_hird copy:

;
Al 2] 8 |14]24] k
j clefsfz] | [[[|

Bl 5] 7| 9] 11]

* After the fourth copy:
1

Al 2] 8 [14]24] k
' clefsfzl8] | [[|

j
B 5| 7] 9] 11]

* After the fifth copy:
1

Al 2] 8 |14]24] K
cl2sl7]8l9] | [|

B 5| 7] 9] 11]

Merging Sorted Arrays (cont.)
 After the sixth copy:

;
Al 2] 8 |14]24] k
icl2|s] 7891z | |

B 5| 7| 9] 11|

» There's nothing left in B, so we simply copy the remaining

elements from A:

;
Al 2] 8 |14]24] k
Jocl2|s5] 78] 9]11]14]24]

B 5| 7] 9] 11]

Divide and Conquer

+ Like quicksort, mergesort is a divide-and-conquer algorithm.
* divide: split the array in half, forming two subarrays

* conquer: apply mergesort recursively to the subarrays,
stopping when a subarray has a single element

» combine: merge the sorted subarrays

[12] 8 [14] 4 | 6 [33] 2 [27]

splt |12 8 |14 4| [6[33] 2]27]
st |12] 8 [[14] 4[| 6 [33]]2]27]
o []e][]+][]z]27]
merge | 8 [12|[4 |14 6 [33]] 2 |27]
merge | 4|8 [12]14]| [2] 6]27]33]
merge |2 4]6]| 8 12]14]27]33]

Tracing the Calls to Mergesort
the initial call is made to sort the entire array:

[12] 8 [14] 4 | 6 [33] 2 |27]

splitinto two 4-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14 4 |

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14 4 |

12| 8

Tracing the Calls to Mergesort

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 14| 4 | 6 [33] 2 | 27]

[12] 8 [14] 4 |

12 | 8

base case, so return to the call for the subarray {12, 8}:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14] 4 |

12 | 8

Tracing the Calls to Mergesort

make a recursive call to sort its right subarray:

[12] 8 |14] 4 | 6 [33] 2 |27]

[12] 8 [14] 4 |

12 | 8

base case, so return to the call for the subarray {12, 8}:

[12] 8 [14] 4 | 6 [33] 2 [27]

[12] 8 |14] 4 |

12 | 8

Tracing the Calls to Mergesort

merge the sorted halves of {12, 8}:
[12] 8 14| 4 | 6 [33] 2 | 27]

[12] 8 [14] 4 |

[0]=[E 1]

end of the method, so return to the call for the 4-element subarray, which now has
a sorted left subarray:

[12] 8 [14] 4 | 6 [33] 2 |27]

[8 |12]14] 4 |

Tracing the Calls to Mergesort

make a recursive call to sort the right subarray of the 4-element subarray

[12] 8 |14] 4 | 6 [33] 2 |27]

[8 |12]14] 4 |

14| 4

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

[12] 8 [14] 4 | 6 [33] 2 |27]

[8 |12]14] 4 |

14 | 4

base case...

Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

[12] 8 14| 4 | 6 [33] 2 | 27]

| 8 [12]14] 4 |

14 | 4

make a recursive call to sort its right subarray:

[12] 8 [14] 4 | 6 [33] 2 [27]

| 8 [12]14] 4 |

14 | 4

base case...

Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

[12] 8 |14] 4 | 6 [33] 2 |27]

[8 |12]14] 4 |

14| 4

merge the sorted halves of {14, 4}:

[12] 8 [14] 4 | 6 [33] 2 |27]

[8 |12]14] 4 |

[14] 4 | =] 4 | 14]

Tracing the Calls to Mergesort

end of the method, so return to the call for the 4-element subarray, which now has
two sorted 2-element subarrays:

[12] 8 [14] 4 | 6 [33] 2 [27]

[8 [12] 4 |14]

merge the 2-element subarrays:

[12] 8 [14] 4 | 6 [33] 2 [27]

[8124 14| =] 4|8 |12]14]

Tracing the Calls to Mergesort

end of the method, so return to the call for the original array, which now has a
sorted left subarray:

| 4] 8|12]14] 6 [33] 2 |27

perform a similar set of recursive calls to sort the right subarray. here's the result:

[4] 8]12]14] 2| 6 |27]33]

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

[4] 8]12]14] 2| 6 |27]33]

i

[2]4]6]8]12]14]27]33]

Implementing Mergesort

» In theory, we could create new arrays for each new pair of
subarrays, and merge them back into the array that was split.

+ Instead, we'll create a temp. array of the same size as the original.
+ pass it to each call of the recursive mergesort method
+ use it when merging subarrays of the original array:
arr[8 [12] 4 [14] 6 [33] 2 |27]

i

em (4 [8 [2[0e] [[] |

+ after each merge, copy the result back into the original array:
arr| 4 [8 [12]14] 6 [33] 2 |27]

1

tep| 4 [8 [12]14] | | | |

A Method for Merging Subarrays

private static void merge(int[] arr, int[] temp,
int TeftStart, int leftEnd, int rightStart, int rightend) {

int i = leftStart; // index into Tleft subarray
int j = rightstart; // index into right subarray
int k = TeftStart; // index into temp

while (i <= TeftEnd & j <= righteEnd) {
if (arr[i] < arr[j]) {
temp[k] = arr[i];
i++; k++s
} else {
temp[k] = arr[jl;
Jj++; k++;
}
}

while (i <= Teftend) {
temp[k] = arr[i];
T4+ k++;

}

while (j <= rightend) {
temp[k] = arr[j];
J++; k++;

}

for (i = leftstart; i <= righteEnd; i++) {
arr[i] = temp[il;

}

A Method for Merging Subarrays

private static void merge(int[] arr, int[] temp,
int TeftStart, int TeftEnd, int rightStart, int righteEnd) {

int i = leftStart; // index into left subarray
int j = rightstart; // index into right subarray
int k = leftStart; // index into temp

while (i <= TefteEnd && j <= rightend) { // both subarrays still have values
if (arr[i] < arr[j]) {
temp[k] = arr[i];

4+ kt+;
} else {
temp[k] = arr[jl;
J++; k++;
}
}
}
leftstart leftend|rightstart rightend
arr:| .. 4 8 12 14 2 6 27 | 33
temp:

Methods for Mergesort

* Here's the key recursive method:

private static void mSort(int[] arr, int[] temp, int start, int end){

if (start >= end) { // base case: subarray of length 0 or 1
return;

} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);

start end

arr:| . 12 8 14 4 6 33 2 27

temp:

Methods for Mergesort

Here's the key recursive method:

private static void mSort(int[] arr, int[] temp, int start, int end){
if (start >= end) { // base case: subarray of Tength 0 or 1
return;
} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);

We use a "wrapper" method to create the temp array,
and to make the initial call to the recursive method:
public static void mergeSort(int[] arr) {

int[] temp = new int[arr.length];
msort(arr, temp, 0, arr.length - 1);

Time Analysis of Mergesort

Merging two halves of an array of size n requires 2n moves.
Why?

Mergesort repeatedly divides the array in half, so we have the
following call tree (showing the sizes of the arrays):

moves
] 2
n/2 n/2 2%2%(n/2) = 2n

(n/4] [n/4] [n/4] [n/4] 4%2%(n/4) = 2n
at all but the last level of the call tree, there are 2n moves
* how many levels are there?

« M(n) =7
+ C(n) =7

Summary: Sorting Algorithms

algorithm | best case | avgcase |worstcase| €xtramemory
selection sort O(n?) O(n?) O(n?) o
insertion sort o) O(n?) O(n?) o

Shell sort | O(n Togn) Oo(nt-3) Oo(nt-3) o

bubble sort o(n?) o(n?) o(n?) o

quicksort O(nlogn) | O(nlogn) Oo(n?) best/avg: O(log n)

worst: O(n)
mergesort | O(nlogn) | O(nTogn) | O(nlogn) O(n)

Insertion sort is best for nearly sorted arrays.

Mergesort has the best worst-case complexity, but requires
O(n) extra memory — and moves to and from the temp. array.
Quicksort is comparable to mergesort in the best/average case.
+ efficiency is also O(n 1og n), but less memory and fewer moves
* its extra memory is from...
» with a reasonable pivot choice, its worst case is seldom seen

Comparison-Based vs. Distributive Sorting
All of the sorting algorithms we've considered have been
comparison-based:
+ treat the values being sorted as wholes (comparing them)
+ don’t “take them apart” in any way
« all that matters is the relative order of the values

No comparison-based sorting algorithm can do better than
0(nTog,n) on an array of length n.

» O(nlog,n) is alower bound for such algorithms

Distributive sorting algorithms do more than compare values;
they perform calculations on the values being sorted.

Moving beyond comparisons allows us to overcome
the lower bound.

+ tradeoff: use more memory.

Distributive Sorting Example: Radix Sort

» Breaks each value into a sequence of m components,
each of which has k possible values.

+ Examples:
* integerinrange O ... 999
+ string of 15 upper-case letters 15 26
+ 32-bit integer 32 2 (in binary)
4 256 (as bytes)

» Strategy: Distribute the values into "bins" according to their
last component, then concatenate the results:

33 41 12 24 31 14 13 42 34
get: 41 31|12 42 | 33 13 | 24 14 34

* Repeat, moving back one component each time:

get: | | |

Analysis of Radix Sort

« m = number of components
k = number of possible values for each component
n = length of the array

+ Time efficiency: O(m*n)
» perform m distributions, each of which processes all n values
* O(m*n) < O(nlogn) when m < logn
so we want m to be small

» However, there is a tradeoff:
» as m decreases, k increases
» fewer components =» more possible values per component
» as k increases, so does memory usage
» need more bins for the results of each distribution
* increased speed requires increased memory usage

slower

Big-O Notation Revisited

We've seen that we can group functions into classes by
focusing on the fastest-growing term in the expression for the
number of operations that they perform.
* e.g., an algorithm that performs n?2/2 —n/2 operations is a
O(n?)-time or quadratic-time algorithm

Common classes of algorithms:

name example expressions big-O notation
constant time 1,7,10 o
logarithmic time 31ogq4n, log,n + 5 O(Clogn)
linear time 5n, 10n - 2Tog;n O(n)

nlogn time 4nlog,n, nlog,n+n O(nlogn)
quadratic time 2n?+3n,n2-1 O(n?)

cubic time nZ+3n3, 5n3-5 O(n3)
exponential time 2", 5e" + 2n? O(cm
factorial time 3n!, 5n +n! Oo(nH)

How Does the Number of Operations Scale?

Let's say that we have a problem size of 1000, and we measure
the number of operations performed by a given algorithm.

If we double the problem size to 2000, how would the number
of operations performed by an algorithm increase if it is:

* O(n)-time

O(n?)-time

O(n3)-time
* O(log,n)-time

* O(2M)-time

How Does the Actual Running Time Scale?

* How much time is required to solve a problem of size n?
« assume that each operation requires 1 usec (1 x 10 sec)

time problem size (n)
function 10 20 30 40 50 60
n .00001 s | .00002 s | .00003 s | .00004 s | .00005s | .00006 s
n2 .0001s | .0004s | .0009s | .0016s | .0025s .0036 s
n® 1s 3.2s 24.3s 1.7 min | 5.2 min 13.0 min
2" .001s 1.0s 17.9 min |12.7 days| 35.7 yrs | 36,600 yrs

+ sample computations:
« when n = 10, an n? algorithm performs 102 operations.

102 * (1 x 10 sec) = .0001 sec

« when n = 30, a 2" algorithm performs 230 operations.
230* (1 x 10 sec) = 1073 sec = 17.9 min

What's the Largest Problem That Can Be Solved?

+ What's the largest problem size n that can be solved in
a given time T? (again assume 1 usec per operation)

time time available (T)
function 1 min 1 hour 1 week 1 year
n 60,000,000 | 3.6 x10° 6.0 x 10" 3.1x101
n2 7745 60,000 777,688 5,615,692
n® 35 81 227 500
2" 25 31 39 44

* sample computations:
* 1 hour = 3600 sec
that's enough time for 3600/(1 x 10-%) = 3.6 x 10° operations
* n2 algorithm:
n2=36x10° - n = (3.6 x 1092 =60,000
+ 2" algorithm:
2n=36x10° > n =log,(3.6 x 10%) ~= 31

