
Sorting II:
Divide-and-Conquer Algorithms,

Distributive Sorting

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 7, Part 2

Quicksort

• Like bubble sort, quicksort uses an approach based on swapping
out-of-order elements, but it’s more efficient.

• A recursive, divide-and-conquer algorithm:

• divide: rearrange the elements so that we end up with
two subarrays that meet the following criterion:

each element in left array <= each element in right array

example:

• conquer: apply quicksort recursively to the subarrays,
stopping when a subarray has a single element

• combine: nothing needs to be done, because of the way
we formed the subarrays

136414812 131214486

Partitioning an Array Using a Pivot

• The process that quicksort uses to rearrange the elements
is known as partitioning the array.

• It uses one of the values in the array as a pivot,
rearranging the elements to produce two subarrays:
• left subarray: all values <= pivot
• right subarray: all values >= pivot

• The subarrays will not always have the same length.

• This approach to partitioning is one of several variants.

12918694157

12151896497

all values <= 9 all values >= 9

partition using a pivot of 9

equivalent to the criterion
on the previous page.

Possible Pivot Values

• First element or last element

• risky, can lead to terrible worst-case behavior

• especially poor if the array is almost sorted

• Middle element (what we will use)

• Randomly chosen element

• Median of three elements

• left, center, and right elements

• three randomly selected elements

• taking the median of three decreases the probability of
getting a poor pivot

186121484 186121484

pivot = 18

Partitioning an Array: An Example

• Maintain indices i and j, starting them “outside” the array:

• Find “out of place” elements:
• increment i until arr[i] >= pivot

• decrement j until arr[j] <= pivot

• Swap arr[i] and arr[j]:

12918694157

12918694157

12151869497

i j

i j

i j

i = first – 1

j = last + 1

12918694157arr

pivot = 9

first last

Partitioning Example (cont.)

from prev. page:

• Find:

• Swap:

• Find:

and now the indices have crossed, so we return j.

• Subarrays: left = from first to j, right = from j+1 to last

12151869497

12151869497

12151896497

i j

i j

12151896497

i j

12151896497

j i

j ifirst last

Partitioning Example 2

• Start
(pivot = 13):

• Find:

• Swap:

• Find:

and now the indices are equal, so we return j.

• Subarrays:

1920418132524

1920418132524

1920241813254

i j

i j

1920241813254

i j

1920241813254

i j

i j

24 4

13

Partitioning Example 3 (done together)

• Start
(pivot = 5):

• Find:

62619257144

62619257144

i j

Partitioning Example 4

• Start
(pivot = 15):

• Find:

186920157108

186920157108

i j

partition() Helper Method
private static int partition(int[] arr, int first, int last)
{

int pivot = arr[(first + last)/2];
int i = first - 1; // index going left to right
int j = last + 1; // index going right to left
while (true) {

do {
i++;

} while (arr[i] < pivot);
do {

j--;
} while (arr[j] > pivot);
if (i < j) {

swap(arr, i, j);
} else {

return j; // arr[j] = end of left array
}

}
}

…12918694157…

first last

Implementation of Quicksort
public static void quickSort(int[] arr) { // "wrapper" method

if (arr.length <= 1) {
return;

}
qSort(arr, 0, arr.length - 1);

}

private static void qSort(int[] arr, int first, int last) {
int split = partition(arr, first, last);

if (first < split) { // if left subarray has 2+ values
qSort(arr, first, split); // sort it recursively!

}
if (last > split + 1) { // if right has 2+ values

qSort(arr, split + 1, last); // sort it!
}

} // note: base case is when neither call is made!

…12151896497…

first last
split
(j)

A Quick Review of Logarithms

• logbn = the exponent to which b must be raised to get n

• logbn = p if bp = n

• examples: log28 = 3 because 23 = 8

log1010000 = 4 because 104 = 10000

• Another way of looking at log2n:

• let's say that you repeatedly divide n by 2 (using integer division)

• log2n is an upper bound on the number of divisions
needed to reach 1

• example: log218 is approx. 4.17

18/2 = 9 9/2 = 4 4/2 = 2 2/2 = 1

A Quick Review of Logs (cont.)

• O(log n) algorithm – one in which the number of operations
is proportional to logbn for any base b

• logbn grows much more slowly than n

• Thus, for large values of n:

• a O(log n) algorithm is much faster than a O(n) algorithm
• logn << n

• a O(nlog n) algorithm is much faster than a O(n2) algorithm
• n * logn << n * n
nlog n << n2

log2nn

12

101024 (1K)

201024*1024 (1M)

301024*1024*1024 (1G)

it's also faster than a O(n1.5)
algorithm like Shell sort

Time Analysis of Quicksort

• Partitioning an array of length n requires approx. n comparisons.
• most elements are compared with the pivot once; a few twice

• best case: partitioning always divides the array in half
• repeated recursive calls give:

n

2*(n/2) = n

4*(n/4) = n

...

0

• at each "row" except the bottom, we perform n comparisons
• there are _______ rows that include comparisons
• C(n) = ?

• Similarly, M(n) and running time are both __________

n/2n/2

n/4n/4n/4n/4

1111 1 1 1 1 1

comparisons

...

n

…1

Time Analysis of Quicksort (cont.)

• worst case: pivot is always the smallest or largest element
• one subarray has 1 element, the other has n - 1

• repeated recursive calls give:

n

n-1

n-2

n-3
.......

2

• C(n) = = O(n2).

• average case is harder to analyze
• C(n) > nlog2n, but it’s still O(nlog n)

n-1

n

1

n-21

n-31

1

1 1

...

comparisons




n

2 i

i M(n) and run time are also O(n2).

2

Mergesort

• The algorithms we've seen so far have sorted the array in place.

• use only a small amount of additional memory

• Mergesort requires an additional temporary array
of the same size as the original one.

• it needs O(n) additional space, where n is the array size

• It is based on the process of merging two sorted arrays.

• example:

11975

241482

24141198752

Merging Sorted Arrays

• To merge sorted arrays A and B into an array C, we maintain
three indices, which start out on the first elements of the arrays:

• We repeatedly do the following:
• compare A[i] and B[j]
• copy the smaller of the two to C[k]
• increment the index of the array whose element was copied
• increment k

241482

11975

i

j

A

B

C

k

2

241482

11975

i

j

A

B

C

k

Merging Sorted Arrays (cont.)

• Starting point:

• After the first copy:

• After the second copy:

241482

11975

i

j

A

B

C

k

2

241482

11975

i

j

A

B

C

k

52

241482

11975

i

j

A

B

C

k

Merging Sorted Arrays (cont.)

• After the third copy:

• After the fourth copy:

• After the fifth copy:

752

241482

11975

i

j

A

B

C

k

8752

241482

11975

i

j

A

B

C

k

98752

241482

11975

i

j

A

B

C

k

Merging Sorted Arrays (cont.)

• After the sixth copy:

• There's nothing left in B, so we simply copy the remaining
elements from A:

1198752

241482

11975

i

j

A

B

C

k

24141198752

241482

11975

i

j

A

B

C

k

Divide and Conquer

• Like quicksort, mergesort is a divide-and-conquer algorithm.

• divide: split the array in half, forming two subarrays

• conquer: apply mergesort recursively to the subarrays,
stopping when a subarray has a single element

• combine: merge the sorted subarrays

272336 4148 12

4148 12 27233 6

8 12 4 14 33 6 27 2

12 8 14 4 6 33 2 27

12 8 14 4 33 6 27 2

14128 4 33276 2

33271412 864 2

split

split

split

merge

merge

merge

Tracing the Calls to Mergesort

272336 4148 12

272336 4148 12

4148 12

8 12

272336 4148 12

4148 12

split into two 4-element subarrays, and make a recursive call to sort the left subarray:

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

the initial call is made to sort the entire array:

Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

12

8 12

272336 4148 12

4148 12

base case, so return to the call for the subarray {12, 8}:

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

8 12

272336 4148 12

4148 12

base case, so return to the call for the subarray {12, 8}:

make a recursive call to sort its right subarray:

8

Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

end of the method, so return to the call for the 4-element subarray, which now has
a sorted left subarray:

merge the sorted halves of {12, 8}:

12 8

272336 4148 12

41412 8

Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

make a recursive call to sort the right subarray of the 4-element subarray

272336 4148 12

41412 8

4 14

14 base case…

Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

make a recursive call to sort its right subarray:

return to the call for the subarray {14, 4}:

272336 4148 12

41412 8

4 14

4 base case…

Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

merge the sorted halves of {14, 4}:

return to the call for the subarray {14, 4}:

272336 4148 12

41412 8

4 14 14 4

Tracing the Calls to Mergesort

272336 4148 12

14412 8

merge the 2-element subarrays:

end of the method, so return to the call for the 4-element subarray, which now has
two sorted 2-element subarrays:

272336 4148 12

14412 8 14128 4

Tracing the Calls to Mergesort

272336 14128 4

perform a similar set of recursive calls to sort the right subarray. here's the result:

end of the method, so return to the call for the original array, which now has a
sorted left subarray:

332762 14128 4

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

332762 14128 4

33271412 864 2

Implementing Mergesort

• In theory, we could create new arrays for each new pair of
subarrays, and merge them back into the array that was split.

• Instead, we'll create a temp. array of the same size as the original.

• pass it to each call of the recursive mergesort method

• use it when merging subarrays of the original array:

• after each merge, copy the result back into the original array:

272336 14412 8arr

14128 4temp

272336 14128 4arr

14128 4temp

A Method for Merging Subarrays
private static void merge(int[] arr, int[] temp,
int leftStart, int leftEnd, int rightStart, int rightEnd) {

int i = leftStart; // index into left subarray
int j = rightStart; // index into right subarray
int k = leftStart; // index into temp

while (i <= leftEnd && j <= rightEnd) {
if (arr[i] < arr[j]) {

temp[k] = arr[i];
i++; k++;

} else {
temp[k] = arr[j];
j++; k++;

}
}

while (i <= leftEnd) {
temp[k] = arr[i];
i++; k++;

}
while (j <= rightEnd) {

temp[k] = arr[j];
j++; k++;

}

for (i = leftStart; i <= rightEnd; i++) {
arr[i] = temp[i];

}
}

A Method for Merging Subarrays
private static void merge(int[] arr, int[] temp,
int leftStart, int leftEnd, int rightStart, int rightEnd) {

int i = leftStart; // index into left subarray
int j = rightStart; // index into right subarray
int k = leftStart; // index into temp

while (i <= leftEnd && j <= rightEnd) { // both subarrays still have values
if (arr[i] < arr[j]) {

temp[k] = arr[i];
i++; k++;

} else {
temp[k] = arr[j];
j++; k++;

}
}

...
}

…332762 14128 4…

leftStart

arr:

……temp:

leftEnd rightStart rightEnd

Methods for Mergesort

• Here's the key recursive method:
private static void mSort(int[] arr, int[] temp, int start, int end){

if (start >= end) { // base case: subarray of length 0 or 1
return;

} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);
}

}

…272336 4148 12…

start

arr:

end

……temp:

Methods for Mergesort

• Here's the key recursive method:
private static void mSort(int[] arr, int[] temp, int start, int end){

if (start >= end) { // base case: subarray of length 0 or 1
return;

} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);
}

}

• We use a "wrapper" method to create the temp array,
and to make the initial call to the recursive method:

public static void mergeSort(int[] arr) {
int[] temp = new int[arr.length];
mSort(arr, temp, 0, arr.length - 1);

}

Time Analysis of Mergesort

• Merging two halves of an array of size n requires 2n moves.
Why?

• Mergesort repeatedly divides the array in half, so we have the
following call tree (showing the sizes of the arrays):

2n

2*2*(n/2) = 2n

4*2*(n/4) = 2n

...

• at all but the last level of the call tree, there are 2n moves

• how many levels are there?
• M(n) = ?

• C(n) = ?

n/2n/2

n/4n/4n/4n/4

11111 1 1 1 1 1

moves

...

n

…

Summary: Sorting Algorithms

• Insertion sort is best for nearly sorted arrays.

• Mergesort has the best worst-case complexity, but requires
O(n) extra memory – and moves to and from the temp. array.

• Quicksort is comparable to mergesort in the best/average case.

• efficiency is also O(n log n), but less memory and fewer moves

• its extra memory is from…

• with a reasonable pivot choice, its worst case is seldom seen

extra memoryworst caseavg casebest casealgorithm

O(1)O(n2)O(n2)O(n2)selection sort

O(1)O(n2)O(n2)O(n)insertion sort

O(1)O(n1.5)O(n1.5)O(n log n)Shell sort

O(1)O(n2)O(n2)O(n2)bubble sort

best/avg: O(log n)

worst: O(n)

O(n2)O(n log n)O(n log n)quicksort

O(n)O(nlog n)O(n log n)O(n log n)mergesort

Comparison-Based vs. Distributive Sorting

• All of the sorting algorithms we've considered have been
comparison-based:

• treat the values being sorted as wholes (comparing them)

• don’t “take them apart” in any way

• all that matters is the relative order of the values

• No comparison-based sorting algorithm can do better than
O(nlog2n) on an array of length n.

• O(nlog2n) is a lower bound for such algorithms

• Distributive sorting algorithms do more than compare values;
they perform calculations on the values being sorted.

• Moving beyond comparisons allows us to overcome
the lower bound.

• tradeoff: use more memory.

Distributive Sorting Example: Radix Sort

• Breaks each value into a sequence of m components,
each of which has k possible values.

• Examples: m k
• integer in range 0 ... 999 3 10
• string of 15 upper-case letters 15 26
• 32-bit integer 32 2 (in binary)

4 256 (as bytes)

• Strategy: Distribute the values into "bins" according to their
last component, then concatenate the results:

33 41 12 24 31 14 13 42 34

get: 41 31 | 12 42 | 33 13 | 24 14 34

• Repeat, moving back one component each time:

get: 12 13 14 | 24 | 31 33 34 | 41 42

Analysis of Radix Sort

• m = number of components
k = number of possible values for each component
n = length of the array

• Time efficiency: O(m*n)

• perform m distributions, each of which processes all n values

• O(m*n) < O(nlog n) when m < log n

so we want m to be small

• However, there is a tradeoff:

• as m decreases, k increases
• fewer components  more possible values per component

• as k increases, so does memory usage
• need more bins for the results of each distribution

• increased speed requires increased memory usage

Big-O Notation Revisited

• We've seen that we can group functions into classes by
focusing on the fastest-growing term in the expression for the
number of operations that they perform.

• e.g., an algorithm that performs n2/2 – n/2 operations is a
O(n2)-time or quadratic-time algorithm

• Common classes of algorithms:

name example expressions big-O notation
constant time 1, 7, 10 O(1)

logarithmic time 3log10n, log2n + 5 O(log n)

linear time 5n, 10n – 2log2n O(n)

nlogn time 4nlog2n, nlog2n + n O(nlog n)

quadratic time 2n2 + 3n, n2 – 1 O(n2)

cubic time n2 + 3n3, 5n3 – 5 O(n3)

exponential time 2n, 5en + 2n2 O(cn)

factorial time 3n!, 5n + n! O(n!)

sl
ow

er

How Does the Number of Operations Scale?

• Let's say that we have a problem size of 1000, and we measure
the number of operations performed by a given algorithm.

• If we double the problem size to 2000, how would the number
of operations performed by an algorithm increase if it is:

• O(n)-time

• O(n2)-time

• O(n3)-time

• O(log2n)-time

• O(2n)-time

How Does the Actual Running Time Scale?

• How much time is required to solve a problem of size n?

• assume that each operation requires 1 sec (1 x 10-6 sec)

• sample computations:

• when n = 10, an n2 algorithm performs 102 operations.
102 * (1 x 10-6 sec) = .0001 sec

• when n = 30, a 2n algorithm performs 230 operations.
230 * (1 x 10-6 sec) = 1073 sec = 17.9 min

problem size (n)time
function 605040302010

.00006 s.00005 s.00004 s.00003 s.00002 s.00001 sn
.0036 s.0025 s.0016 s.0009 s.0004 s.0001 sn2

13.0 min5.2 min1.7 min24.3 s3.2 s.1 sn5

36,600 yrs35.7 yrs12.7 days17.9 min1.0 s.001 s2n

What's the Largest Problem That Can Be Solved?

• What's the largest problem size n that can be solved in
a given time T? (again assume 1 sec per operation)

• sample computations:

• 1 hour = 3600 sec
that's enough time for 3600/(1 x 10-6) = 3.6 x 109 operations

• n2 algorithm:

n2 = 3.6 x 109  n = (3.6 x 109)1/2 = 60,000

• 2n algorithm:

2n = 3.6 x 109  n = log2(3.6 x 109) ~= 31

time available (T)time
function 1 year1 week1 hour1 min

3.1 x 10136.0 x 10113.6 x 10960,000,000n
5,615,692777,68860,0007745n2

5002278135n5

443931252n

