
A First Look at
Sorting and Algorithm Analysis

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 7, Part 1

Sorting an Array of Integers

• Ground rules:
• sort the values in increasing order
• sort “in place,” using only a small amount of additional storage

• Terminology:
• position: one of the memory locations in the array
• element: one of the data items stored in the array
• element i: the element at position i

• Goal: minimize the number of comparisons C and the number
of moves M needed to sort the array.

• move = copying an element from one position to another
example: arr[3] = arr[5];

15 7 36

0 1 2

arr 40 12

n-2 n-1
…

Defining a Class for our Sort Methods
public class Sort {

public static void bubbleSort(int[] arr) {
...

}
public static void insertionSort(int[] arr) {

...
}
...

}

• Our Sort class is simply a collection of methods like Java’s
built-in Math class.

• Because we never create Sort objects, all of the methods in
the class must be static.

• outside the class, we invoke them using the class name:
e.g., Sort.bubbleSort(arr)

Defining a Swap Method

• It would be helpful to have a method that swaps two elements
of the array.

• Why won’t the following work?

private static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

private static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

• Trace through the following lines to see the problem:

int[] arr = {15, 7, …};
swap(arr[0], arr[1]);

stack heap

...

arr

An Incorrect Swap Method

15 7

A Correct Swap Method

• This method works:
private static void swap(int[] arr, int a, int b) {

int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;

}

• Trace through the following with a memory diagram to convince
yourself that it works:

int[] arr = {15, 7, …};
swap(arr, 0, 1);

Selection Sort

• Basic idea:
• consider the positions in the array from left to right
• for each position, find the element that belongs there and put it

in place by swapping it with the element that’s currently there

• Example:

15 6 2 12 4

0 1 2 3 4

2

0

2 6 15 12 4

0 1 2 3 4

4

1

2 4 15 12 6

0 1 2 3 4

6

2

2 4 6 12 15

0 1 2 3 4

12

3

Why don’t we need to consider position 4?

Selecting an Element

• When we consider position i, the elements in positions
0 through i – 1 are already in their final positions.

example for i = 3:

• To select an element for position i:

• consider elements i, i+1,i+2,…,arr.length – 1, and
keep track of indexMin, the index of the smallest element
seen thus far

• when we finish this pass, indexMin is the index of the
element that belongs in position i.

• swap arr[i] and arr[indexMin]:

2 4 7 21 25 10 17

0 1 2 3 4 5 6

indexMin: 3 2 4 7 21 25 10 17

0 1 2 3 4 5 6

2 4 7 21 25 10 17

0 1 2 3 4 5 6

10 21

, 5 1010

Implementation of Selection Sort

• Use a helper method to find the index of the smallest element:
private static int indexSmallest(int[] arr, int start) {

int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
if (arr[i] < arr[indexMin]) {

indexMin = i;
}

}

return indexMin;
}

• The actual sort method is very simple:
public static void selectionSort(int[] arr) {

for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, i);
swap(arr, i, j);

}
}

Time Analysis

• Some algorithms are much more efficient than others.

• The time efficiency or time complexity of an algorithm is some
measure of the number of operations that it performs.

• for sorting, we’ll focus on comparisons and moves

• We want to characterize how the number of operations
depends on the size, n, of the input to the algorithm.

• for sorting, n is the length of the array

• how does the number of operations grow as n grows?

• We'll express the number of operations as functions of n

• C(n) = number of comparisons for an array of length n

• M(n) = number of moves for an array of length n

Counting Comparisons by Selection Sort
private static int indexSmallest(int[] arr, int start){

int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
if (arr[i] < arr[indexMin]) {

indexMin = i;
}

}

return indexMin;
}
public static void selectionSort(int[] arr) {

for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, i);
swap(arr, i, j);

}
}

• To sort n elements, selection sort performs n - 1 passes:

on 1st pass, it performs ____ comparisons to find indexSmallest
on 2nd pass, it performs ____ comparisons

…
on the (n-1)st pass, it performs 1 comparison

• Adding them up: C(n) = 1 + 2 + … + (n - 2) + (n - 1)

Counting Comparisons by Selection Sort (cont.)

• The resulting formula for C(n) is the sum of an arithmetic
sequence:

C(n) = 1 + 2 + … + (n - 2) + (n - 1) =

• Formula for the sum of this type of arithmetic sequence:

• Thus, we can simplify our expression for C(n) as follows:

C(n) =

=

=




1 - n

1 i

i

2

1)m(m
 i

m

1 i









1 - n

1 i

i

2

1)1)-1)((n-(n



2

1)n-(n
 2n- 2n2C(n) =

Focusing on the Largest Term

• When n is large, mathematical expressions of n are dominated
by their “largest” term — i.e., the term that grows fastest as a
function of n.

• example: n n2/2 n/2 n2/2 – n/2
10 50 5 45
100 5000 50 4950
10000 50,000,000 5000 49,995,000

• In characterizing the time complexity of an algorithm,
we’ll focus on the largest term in its operation-count expression.

• for selection sort, C(n) = n2/2 - n/2  n2/2

• In addition, we’ll typically ignore the coefficient of the largest term
(e.g., n2/2  n2).

Big-O Notation

• We specify the largest term using big-O notation.

• e.g., we say that C(n) = n2/2 – n/2 is O(n2)

• Common classes of algorithms:

name example expressions big-O notation
constant time 1, 7, 10 O(1)

logarithmic time 3log10n, log2n + 5 O(log n)

linear time 5n, 10n – 2log2n O(n)

nlogn time 4nlog2n, nlog2n + n O(nlog n)

quadratic time 2n2 + 3n, n2 – 1 O(n2)

exponential time 2n, 5en + 2n2 O(cn)

• For large inputs, efficiency matters more than CPU speed.

• e.g., an O(log n) algorithm on a slow machine will
outperform an O(n) algorithm on a fast machine

sl
ow

er

Ordering of Functions

• We can see below that: n2 grows faster than nlog2n
nlog2n grows faster than n
n grows faster than log2n

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12

n^2

n log n

n

log n

n

Ordering of Functions (cont.)

• Zooming in, we see that: n2 >= n for all n >= 1
nlog2n >= n for all n >= 2
n > log2n for all n >= 1

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6

n^2

n log n

n

log n

Big-O Time Analysis of Selection Sort

• Comparisons: we showed that C(n) = n2/2 – n/2

• selection sort performs O(n2) comparisons

• Moves: after each of the n-1 passes, the algorithm does one swap.

• n-1 swaps, 3 moves per swap

• M(n) = 3(n-1) = 3n-3

• selection sort performs O(n) moves.

• Running time (i.e., total operations): ?

Mathematical Definition of Big-O Notation

• f(n) = O(g(n)) if there exist positive constants c and n0

such that f(n) <= cg(n) for all n >= n0

• Example: f(n) = n2/2 – n/2 is O(n2), because
n2/2 – n/2 <= n2 for all n >= 0.

• Big-O notation specifies an upper bound on a function f(n)
as n grows large.

n

f(n) = n2/2 – n/2

g(n) = n2

n0 = 0c = 1

Big-O Notation and Tight Bounds

• Strictly speaking, big-O notation provides an upper bound,
not a tight bound (upper and lower).

• Example:

• 3n – 3 is O(n2) because 3n – 3 <= n2 for all n >= 1

• 3n – 3 is also O(2n) because 3n – 3 <= 2n for all n >= 1

• However, it is common to use big-O notation to characterize
a function as closely as possible – as if it specified a tight bound.

• for our example, we would say that 3n – 3 is O(n)

• this is how you should use big-O in this class!

Insertion Sort

• Basic idea:

• going from left to right, “insert” each element into its proper
place with respect to the elements to its left

• “slide over” other elements to make room

• Example:

15 4 2 12 6

0 1 2 3 4

4 15 2 12 6

2 4 15 12 6

2 4 12 15 6

2 4 6 12 15

4

2

12

6

Comparing Selection and Insertion Strategies

• In selection sort, we start with the positions in the array and
select the correct elements to fill them.

• In insertion sort, we start with the elements and determine
where to insert them in the array.

• Here’s an example that illustrates the difference:

• Sorting by selection:
• consider position 0: find the element (2) that belongs there
• consider position 1: find the element (9) that belongs there
• …

• Sorting by insertion:
• consider the 12: determine where to insert it
• consider the 15; determine where to insert it
• …

18 12 15 9 25 2 17

0 1 2 3 4 5 6

Inserting an Element
• When we consider element i, elements 0 through i – 1

are already sorted with respect to each other.

example for i = 3:

• To insert element i:
• make a copy of element i, storing it in the variable toInsert:

• consider elements i-1, i-2, …
• if an element > toInsert, slide it over to the right
• stop at the first element <= toInsert

• copy toInsert into the resulting “hole”:

6 14 19 9 …

0 1 2 3 4

6 14 19 9

0 1 2 3

6 9 14 19

0 1 2 3

9toInsert

6 14 19 9

0 1 2 3

9toInsert 1914

Insertion Sort Example (done together)
description of steps 12 5 2 13 18 4

Implementation of Insertion Sort
public class Sort {

...
public static void insertionSort(int[] arr) {

for (int i = 1; i < arr.length; i++) {
if (arr[i] < arr[i-1]) {

int toInsert = arr[i];

int j = i;
do {

arr[j] = arr[j-1];
j = j - 1;

} while (j > 0 && toInsert < arr[j-1]);

arr[j] = toInsert;
}

}
}

}

Time Analysis of Insertion Sort

• The number of operations depends on the contents of the array.

• best case: array is sorted
• each element is only compared to the element to its left
• we never execute the do-while loop!
• C(n) =_______, M(n) = _______, running time = ______

• worst case: array is in reverse order
• each element is compared to all of the elements to its left:

arr[1] is compared to 1 element (arr[0])
arr[2] is compared to 2 elements (arr[0] and arr[1])
…
arr[n-1] is compared to n-1 elements

• C(n) = 1 + 2 + … + (n - 1) = _______

• similarly, M(n) = ______, running time = _______

• average case: elements are randomly arranged
• on average, each element is compared to half

of the elements to its left
• still get C(n) = M(n) = _______, running time = _______

also true if array
is almost sorted

Shell Sort

• Developed by Donald Shell

• Improves on insertion sort

• takes advantage of the fact that it's fast for almost-sorted arrays

• eliminates a key disadvantage: an element may need
to move many times to get to where it belongs.

• Example: if the largest element starts out at the beginning of the
array, it moves one place to the right on every insertion!

• Shell sort uses larger moves that allow elements to quickly get
close to where they belong in the sorted array.

999 42 56 30 18 23 … 11

0 1 2 3 4 5 … 1000

3) elements 2 and 5

Sorting Subarrays

• Basic idea:

• use insertion sort on subarrays that contain elements
separated by some increment incr
• increments allow the data items to make larger “jumps”

• repeat using a decreasing sequence of increments

• Example for an initial increment of 3:

• three subarrays:

• Sort the subarrays using insertion sort to get the following:

• Next, we complete the process using an increment of 1.

36 18 10 27 3 20 9 8

0 1 2 3 4 5 6 7

6 23 14 27 18 20 9 3

0 1 2 3 4 5 6 7

9 3 10 27 8 20 36 18

36 18 27 3 9 8

1) elements 0, 3, 6 2) elements 1, 4, 7

10 20

Shell Sort: A Single Pass

• We don’t actually consider the subarrays one at a time.

• For each element from position incr to the end of the array,
we insert the element into its proper place with respect to
the elements from its subarray that come before it.

• The same
example
(incr = 3):

36 18 10 27 3 20 9 8

0 1 2 3 4 5 6 7

27 18 10 36 3 20 9 8

27 3 10 36 18 20 9 8

27 3 10 36 18 20 9 8

9 3 10 27 18 20 36 8

20

9

8

9 3 10 27 8 20 36 18

36

18

10

27 36

3 18

27

3

• When we consider element i, the other elements in its subarray
are already sorted with respect to each other.

example for i = 6:
(incr = 3)

the other element’s in 9’s subarray (the 27 and 36)
are already sorted with respect to each other

• To insert element i:
• make a copy of element i, storing it in the variable toInsert:

• consider elements i-incr, i-(2*incr), i-(3*incr),…
• if an element > toInsert, slide it right within the subarray
• stop at the first element <= toInsert

• copy toInsert into the “hole”:

27 3 10 36 18 20 9 8

0 1 2 3 4 5 6 7

9 3 10 27 18 …

0 1 2 3 4

9toInsert

27 3 10 36 18 20 9 8

0 1 2 3 4 5 6 7

9toInsert 36

Inserting an Element in a Subarray

27 3 10 36 18 20 9 8

0 1 2 3 4 5 6 7

27

The Sequence of Increments

• Different sequences of decreasing increments can be used.

• Our version uses values that are one less than a power of two.

• 2k – 1 for some k

• … 63, 31, 15, 7, 3, 1

• can get to the next lower increment using integer division:

incr = incr/2;

• Should avoid numbers that are multiples of each other.

• otherwise, elements that are sorted with respect to each other
in one pass are grouped together again in subsequent passes

• repeat comparisons unnecessarily

• get fewer of the large jumps that speed up later passes

• example of a bad sequence: 64, 32, 16, 8, 4, 2, 1

• what happens if the largest values are all in odd positions?

Implementation of Shell Sort
public static void shellSort(int[] arr) {

int incr = 1;
while (2 * incr <= arr.length) {

incr = 2 * incr;
}
incr = incr - 1;

while (incr >= 1) {
for (int i = incr; i < arr.length; i++) {

if (arr[i] < arr[i-incr]) {
int toInsert = arr[i];

int j = i;
do {

arr[j] = arr[j-incr];
j = j - incr;

} while (j > incr-1 &&
toInsert < arr[j-incr]);

arr[j] = toInsert;
}

}
incr = incr/2;

}
}

(If you replace incr with 1
in the for-loop, you get the
code for insertion sort.)

Time Analysis of Shell Sort

• Difficult to analyze precisely

• typically use experiments to measure its efficiency

• With a bad interval sequence, it’s O(n2) in the worst case.

• With a good interval sequence, it’s better than O(n2).

• at least O(n1.5) in the average and worst case

• some experiments have shown average-case running times
of O(n1.25) or even O(n7/6)

• Significantly better than insertion or selection for large n:
n n2 n1.5 n1.25

10 100 31.6 17.8
100 10,000 1000 316
10,000 100,000,000 1,000,000 100,000
106 1012 109 3.16 x 107

• We’ve wrapped insertion sort in another loop and increased its
efficiency! The key is in the larger jumps that Shell sort allows.

Practicing Time Analysis

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < n; i++) {

x += i; // statement 1
for (int j = 0; j < i; j++) {

x += j;
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?

What about now?

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < 3*n + 4; i++) {

x += i; // statement 1
for (int j = 0; j < i; j++) {

x += j;
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?

Practicing Time Analysis

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < n; i++) {

x += i; // statement 1
for (int j = 0; j < i; j++) {

x += j; // statement 2
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 2 is executed as a function of the input n?

value of i number of times statement 2 is executed

0 1 2 3 4

Bubble Sort

• Perform a sequence of passes from left to right

• each pass swaps adjacent elements if they are out of order

• larger elements “bubble up” to the end of the array

• At the end of the kth pass:

• the k rightmost elements are in their final positions

• we don’t need to consider them in subsequent passes.

• Example:

after the first pass:

after the second:

after the third:

after the fourth:

28 24 37 15 5

24 28 15 5 37

24 15 5 28 37

15 5 24 28 37

5 15 24 28 37

Implementation of Bubble Sort
public class Sort {

...
public static void bubbleSort(int[] arr) {

for (int i = arr.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {

if (arr[j] > arr[j+1]) {
swap(arr, j, j+1);

}
}

}
}

}

• Nested loops:

• the inner loop performs a single pass

• the outer loop governs:

• the number of passes (arr.length - 1)

• the ending point of each pass (the current value of i)

Time Analysis of Bubble Sort

• Comparisons (n = length of array):

• they are performed in the inner loop

• how many repetitions does each execution
of the inner loop perform?

value of i number of comparisons
n – 1 n – 1
n – 2 n – 2

… …
2 2
1 1

1 + 2 + … + n – 1 =

public static void bubbleSort(int[] arr) {
for (int i = arr.length - 1; i > 0; i--) {

for (int j = 0; j < i; j++) {
if (arr[j] > arr[j+1]) {

swap(arr, j, j+1);
}

}
}

}

Time Analysis of Bubble Sort

• Comparisons: the kth pass performs n - k comparisons,

so we get C(n) = = n2/2 – n/2 = O(n2)

• Moves: depends on the contents of the array

• in the worst case:

• M(n) =

• in the best case:

• Running time:

• C(n) is always O(n2), M(n) is never worse than O(n2)

• therefore, the largest term of C(n) + M(n) is O(n2)

• Bubble sort is a quadratic-time or O(n2) algorithm.

• can’t do much worse than bubble!




1 - n

1 i

i

