
Inheritance and Polymorphism

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 5, Part 2

A Class for Modeling an Automobile
public class Automobile {

private String make;
private String model;
private int year;
private int mileage;
private String plateNumber;
private int numSeats;
private boolean isSUV;

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {

this.make = make;
this.model = model;
if (year < 1900) {

throw new IllegalArgumentException();
}
this.year = year;
this.numSeats = numSeats;
this.isSUV = isSUV;
this.mileage = 0;
this.plateNumber = "unknown";

}

public Automobile(String make, String model, int year) {
this(make, model, year, 5, false);

} // continued…

A Class for Modeling an Automobile (cont.)

public String getMake() {
return this.make;

}

public String getModel() {
return this.model;

}

public int getYear() {
return this.year;

}

public int getMileage() {
return this.mileage;

}

public String getPlateNumber() {
return this.plateNumber;

}

public int getNumSeats() {
return this.numSeats;

}

public boolean isSUV() {
return this.isSUV;

} // continued…

A Class for Modeling an Automobile (cont.)

public void setMileage(int newMileage) {
if (newMileage < this.mileage) {

throw new IllegalArgumentException();
}
this.mileage = newMileage;

}

public void setPlateNumber(String plate) {

this.plateNumber = plate;

}

public String toString() {
String str = this.make + " " + this.model;
str += "(" + this.numSeats + " seats)";
return str;

}
}

• There are no mutators for the other fields. Why not?

Modeling a Related Class

• What if we now want to write a class to represent a taxi?

• The Taxi class will have the same fields and methods
as the Automobile class.

• It will also have its own fields and methods:
taxiID getID, setID
fareTotal getFareTotal, addFare
numFares getNumFares, getAverageFare

resetFareInfo

• We may also want the Taxi versions of some of the
Automobile methods to behave differently. Examples:

• we may want the toString method to include values
from different fields

• we may want the getNumSeats method to return only
the number of seats available for passengers

Inheritance

• To avoid redefining all of the Automobile fields and methods,
we specify that the Taxi class extends the Automobile class:

public class Taxi extends Automobile {

• The Taxi class will inherit the fields and methods of the
Automobile class.

• it doesn't have to redefine them

A Class for Modeling a Taxi
public class Taxi extends Automobile {

// We don't need to include the fields
// from Automobile!
private String taxiID;
private double fareTotal;
private int numFares;

// constructor goes here...

// We don't need to include the methods
// from Automobile!

public String getID() {
return this.taxiID;

}

public void addFare(double fare) {
if (fare < 0) {

throw new IllegalArgumentException();
}
this.fareTotal += fare;
this.numFares++;

}
...

Using Inherited Methods

• Because Taxi extends Automobile, we can invoke a method
defined in the Automobile class on a Taxi object.

• example:
Taxi t = new Taxi(…);
t.setMileage(25000);

• This works even though there is no setMileage method
defined in the Taxi class!

• Taxi inherits it from Automobile

Overriding an Inherited Method

• A class can override an inherited method, replacing it
with its own version.

• To override a method, the new method must have the same:

• return type

• name

• number and types of parameters

• Example: our Taxi class can define its own toString method:

public String toString() {
return "Taxi (id = " + this.taxiID + ")";

}

• it overrides the toString method inherited from Automobile

Rethinking Our Design

• What if we also want to be able to capture information
about other types of vehicles?

• motorcycles

• trucks

• The classes for these other vehicles should not inherit from
Automobile. Why not?

• Solution: define a Vehicle class

• fields and methods common to all vehicles are defined there

• leave automobile-specific state and behavior in Automobile

• everything else is inherited from Vehicle

• define Motorcycle and Truck classes that also inherit
from Vehicle

A Class for Modeling a Vehicle
public class Vehicle {

private String make;
private String model;
private int year;
private int mileage;
private String plateNumber;
private int numWheels; // this was not in Automobile

public Vehicle(String make, String model, int year,
int numWheels) {

this.make = make;
this.model = model;
if (year < 1900) {

throw new IllegalArgumentException();
}
this.year = year;
this.numWheels = numWheels;
this.mileage = 0;
this.plateNumber = "unknown";

}

public String getMake() {
return this.make;

}

// etc.

Revised Automobile Class
public class Automobile extends Vehicle {

// make, model, etc. are now inherited from Vehicle

// The following are specific to automobiles,
// so we leave them here.
private int numSeats;
private boolean isSUV;

// constructor goes here...

// getMake(), etc. are now inherited from Vehicle

// The following are specific to automobiles,
// so we leave them here.
public int getNumSeats() {

return this.numSeats;
}

public boolean isSUV() {
return this.isSUV;

}
...

}

Inheritance Hierarchy

• Inheritance leads classes to be organized in a hierarchy:

• A class in Java inherits directly from at most one class.

• However, a class can inherit indirectly from a class higher up
in the hierarchy.

• example: Taxi inherits indirectly from Vehicle

Vehicle

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Terminology

• When class C extends class D (directly or indirectly):

• class D is known as a superclass or base class of C

• super – comes above it in the hierarchy

• class C is known as a subclass or derived class of D

• sub – comes below it in the hierarchy

• Examples:

• Automobile is a superclass of
Taxi and Limosine

• Taxi is a subclass of
Automobile and Vehicle

Vehicle

TaxiLimousine

Automobile

Deciding Where to Define a Method

• Assume we only care about the number of axles in truck vehicles.

• Thus, we define the getNumAxles method in the Truck class,
rather than in the Vehicle class.

public int getNumAxles() {

return this.getNumWheels() / 2;
}

• it will be inherited by subclasses of Truck

• it won't be available to non-truck subclasses of Vehicle

• We override this method in the TractorTrailer class,
because tractor trailers have four wheels on all but the front axle:

public int getNumAxles() {
int numBackWheels = this.getNumWheels() – 2;

return 1 + numBackWheels/4;
}

What is Accessible From a Superclass?

• A subclass has direct access to the public fields and methods
of a superclass.

• A subclass does not have direct access to the private
fields and methods of a superclass.

• Example: we can think of an Automobile object as follows:

make

model

year

mileage

plateNumber

numSeats

isSUV

private fields inherited from Vehicle.
They cannot be accessed directly
by methods in Automobile.

fields defined in Automobile.
They can be accessed directly
by methods in Automobile.

numWheels

What is Accessible From a Superclass? (cont.)

• Example: now that make and model are defined in Vehicle,
we're no longer able to access them directly in the
Automobile version of toString:

public String toString() {
String str = this.make + " " + this.model;
str += " (" + this.numSeats + " seats)";
return str;

}

• Instead, we need to make method calls to access the
inherited fields:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

won't compile

What is Accessible From a Superclass? (cont.)

• Faulty approach: redefine the inherited fields in the subclass

public class Vehicle {
private String make;
private String model;
…

}

public class Automobile extends Vehicle {
private String make; // NOT a good idea!
private String model;
…

}

• You should NOT do this!

Writing a Constructor for a Subclass

• Another example of illegally accessing inherited private fields:

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {

this.make = make;
this.model = model;
...

}

• To initialize inherited fields, a constructor should invoke
a constructor from the superclass.

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {
super(make, model, year, 4); // 4 is for numWheels
this.numSeats = numSeats;
this.isSUV = isSUV;

}

• use the keyword super followed by appropriate
parameters for the superclass constructor

• must be done as the very first line of the constructor

Writing a Constructor for a Subclass (cont.)

• If a subclass constructor doesn't explicitly invoke a
superclass constructor, the compiler tries to insert a call
to the superclass constructor with no parameters.

• If there isn't such a constructor, we get a compile-time error.

• example: this constructor won't compile:

public Taxi(String make, String model, int year, String ID)
{

this.taxiID = ID;
}

• the compiler attempts to insert the following call:
super();

• there isn't an Automobile constructor with no parameters

The Object Class

• If a class doesn't explicitly extend another class,
it implicitly extends a special class called Object.

• Thus, the Object class is at the top of the class hierarchy.

• all classes are subclasses of this class

• the default toString and equals methods are defined
in this class

Motorcycle Automobile Truck

Object

String TemperatureVehicle

... ...

Inheritance in the Java API

More Examples of Method Overriding

• Vehicle inherits the fields and methods of Object.

• The inherited toString method isn't very helpful.

• We define a Vehicle version that overrides the inherited one:

public String toString() { // Vehicle version
String str = this.make + " " + this.model;
return str;

}

• When toString is invoked on a Vehicle object,
the Vehicle version is executed:

Vehicle v = new Vehicle("Radio Flyer",
"Classic Tricycle", 2002, 3);

System.out.println(v);

outputs: Radio Flyer Classic Tricycle

More Examples of Method Overriding (cont.)

• The Automobile class inherits the Vehicle version of
toString.

• If we didn't define a toString() method in Automobile,
the inherited version would be used.

• The Automobile version overrides the Vehicle version
so that the number of seats can be included in the string:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

Invoking an Overriden Method

• When a subclass overrides an inherited method, we can
invoke the inherited version by using the keyword super.

• Example: the Automobile version of toString() begins with
the same fields as the Vehicle version:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

• instead of calling the accessor methods, we can do this:
public String toString() {

String str = super.toString();
str += " (" + this.numSeats + " seats)";
return str;

}

• A square is a special type of rectangle.

• but the width and height must be the same

• Assume that we also want Square objects
to have a field for the unit of measurement (e.g., "cm").

• Square objects should mostly behave like Rectangle objects:
Rectangle r = new Rectangle(20, 30);
int area1 = r.area();

Square sq = new Square(40, "cm");
int area2 = sq.area();

• But there may be differences as well:

System.out.println(r);

System.out.println(sq);

output:
20 x 30

Another Example of Inheritance

output:
square with 40-cm sides

Another Example of Inheritance (cont.)
public class Rectangle {

private int width;
private int height;
...

public Rectangle(int initWidth, int initHeight) {
...

}

public int getWidth() {
...

}
... // other methods

}

public class Square extends Rectangle {
private String unit; // inherits other fields

public Square(int side, String unit) {
super(side, side);
this.unit = unit;

}

public String toString() { // overrides
String s = "square with ";
s += this.getWidth() + "-";
s += this.unit + " sides";
return s;

} // inherits other methods
}

Another Example of Inheritance (cont.)
public class Rectangle {

private int width;
private int height;
...

public Rectangle(int initWidth, int initHeight) {
...

}

public int getWidth() {
...

}
... // other methods

}

public class Square extends Rectangle {
private String unit; // inherits other fields

public Square(int side, String unit) {
super(side, side);
this.unit = unit;

}

public String toString() { // overrides
String s = "square with ";
s += this.getWidth() + "-";
s += this.unit + " sides";
return s;

} // inherits other methods
}

Another Example of Method Overriding

• The Rectangle class has the following mutator method:

public void setWidth(int w) {
if (w <= 0) {

throw new IllegalArgumentException();
}
this.width = w;

}

• The Square class inherits it. Why should we override it?

Which of these works?

A. // Square version, which overrides
// the version inherited from Rectangle
public void setWidth(int w) {

this.width = w;
this.height = w;

}

B. // Square version, which overrides
// the version inherited from Rectangle
public void setWidth(int w) {

this.setWidth(w);
this.setHeight(w);

}

C. either version would work

D. neither version would work

Accessing Methods from the Superclass

• The solution: use super to access the inherited version
of the method – the one we are overriding:

// Square version
public void setWidth(int w) {

super.setWidth(w); // call the Rectangle version
super.setHeight(w);

}

• Only use super if you want to call a method from
the superclass that has been overridden.

• If the method has not been overridden, use this as usual.

Accessing Methods from the Superclass

• We need to override all of the inherited mutators:

// Square versions
public void setWidth(int w) {

super.setWidth(w);
super.setHeight(w);

}

public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);

}

public void grow(int dw, int dh) {
if (dw != dh) {

throw new IllegalArgumentException();
}
super.setWidth(this.getWidth() + dw);
super.setHeight(this.getHeight() + dh);

}
getWidth() and getHeight()
are not overridden, so we use this.

is-a Relationships

• We use inheritance to capture is-a relationships.

• an automobile is a vehicle

• a taxi is an automobile

• a tractor trailer is a truck

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Object

Vehicle

has-a Relationships

• Another type of relationship is a has-a relationship.

• one type of object "owns" another type of object

• example: a driver has a vehicle

• Inheritance should not be used to capture has-a relationships.

• it does not make sense to make the Driver class
a subclass of Vehicle

• Instead, we give the "owner" object a field that refers to
the "owned" object:

public class Driver {
String name;
String ID;
Vehicle v;
...

Polymorphism

• We've been using reference variables like this:

Automobile a = new Automobile("Ford", "Model T", …);

• variable a is declared to be of type Automobile

• it holds a reference to an Automobile object

• In addition, a reference variable of type T can hold a reference
to an object from a subclass of T:

Automobile a = new Taxi("Ford", "Tempo", …);

• this works because Taxi is a subclass of Automobile

• a taxi is an automobile!

• The name for this feature of Java is polymorphism.

• from the Greek for “many forms”

• the same code can be used with objects of different types!

Polymorphism and Collections of Objects

• Polymorphism is useful when we have a collection of objects
of different but related types.

• Example:

• let's say that a company has a collection of vehicles
of different types

• we can store all of them in an array of type Vehicle:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", …);
fleet[1] = new Motorcycle("Harley", ...);
fleet[2] = new TractorTrailer("Mack", ...);
fleet[3] = new Taxi("Ford", …);
fleet[4] = new Truck("Dodge", …);

Processing a Collection of Objects

• We can determine the average age of the vehicles in the
company's fleet by doing the following:

int totalAge = 0;
for (int i = 0; i < fleet.length; i++) {

int age = CURRENT_YEAR - fleet[i].getYear();
totalAge += age;

}
double averageAge = (double)totalAge / fleet.length;

• We can invoke getYear() on each object in the array,
regardless of its type.

• they are instances of Vehicle or a subclass of Vehicle

• thus, they must all have a getYear() method

Practice with Polymorphism

• Which of these assignments would be allowed?
Vehicle v1 = new Motorcycle(…);
TractorTrailer t1 = new Truck(…);
Truck t2 = new MovingVan(…);
Taxi t3 = new Automobile(…);
Vehicle v2 = new TractorTrailer(…);
MovingVan m1 = new TractorTrailer(…);

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Object

Vehicle

Declared Type vs. Actual Type
• An object's declared type may not match its actual type:

• declared type: type specified when declaring a variable

• actual type: type specified when creating an object

• Recall this client code:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", 2005);
fleet[1] = new Motorcycle("Harley", …);
fleet[2] = new TractorTrailer("Mack", …);

• Here are the types:

object declared type actual type
fleet[0] Vehicle Automobile

fleet[1] Vehicle Motorcycle

fleet[2] Vehicle TractorTrailer

• The compiler uses the declared type of an object
to determine if a method call is valid.

• starts at the declared type, and goes up
the inheritance hierarchy as needed
looking for a version of the method

• if it can't find a version, the method call
will not compile

• Example: the following would not work:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack",…);
...
System.out.println(fleet[2].getNumAxles());

• the declared type of fleet[2] is Vehicle

• there's no getNumAxles() method defined in
or inherited by Vehicle

Determining if a Method Call is Valid

Vehicle

Truck

TractorTrailer

• In such cases, we can use casting to create a reference with
the necessary declared type:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack", …);
...
TractorTrailer t = (TractorTrailer)fleet[2];

• The following will work:
System.out.println(t.getNumAxles());

• the declared type of t is TractorTrailer

• there is a getNumAxles() method defined in
TractorTrailer, so the compiler is happy

Determining if a Method Call is Valid (cont.)

Determining Which Method to Execute

• Truck also has a getNumAxles method, so this would be
another way to handle the previous problem:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack", …);
...
Truck t2 = (Truck)fleet[2];
System.out.println(t2.getNumAxles());

• The object represented by t2 has:

• a declared type of ______________

• an actual type of _______________

• Both Truck and TractorTrailer have a getNumAxles.
Which version will be executed?

• More generally, how does the interpreter decide which version
of a method should be used?

Dynamic Binding

• At runtime, the Java interpreter selects the version of a method
that is appropriate to the actual type of the object.

• starts at the actual type, and goes up the inheritance
hierarchy as needed until it finds a version of the method

• known as dynamic binding

• Given the code from the previous slide

Vehicle[] fleet = new Vehicle[5]
...
fleet[2] = new TractorTrailer("Mack", …);
...
Truck t2 = (Truck)fleet[2];

System.out.println(t2.getNumAxles());

the TractorTrailer version of getNumAxles would be run

• TractorTrailer is the actual type of t2, and that class has
its own version of getNumAxles

Dynamic Binding (cont.)

• Another example:
public static void printFleet(Vehicle[] fleet) {

for (int i = 0; i < fleet.length; i++) {
System.out.println(fleet[i]);

}
}

• the toString() method is implicitly invoked on each
element of the array when we go to print it.

• the appropriate version is selected by dynamic binding

• note: the selection must happen at runtime, because
the actual types of the objects may not be known when
the code is compiled

Dynamic Binding (cont.)

• Recall our initialization of the array:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", …);
fleet[1] = new Motorcycle("Harley", …);
fleet[2] = new TractorTrailer("Mack", …);
...

• System.out.println(fleet[0]); will invoke the
Automobile version of the toString() method.

• Motorcycle does not define its own toString() method,
so System.out.println(fleet[1]); will invoke the Vehicle
version of toString(), which is inherited by Motorcycle.

• TractorTrailer does not define its own toString()

but Truck does, so System.out.println(fleet[2]);

will invoke the Truck version of toString(), which is inherited
by TractorTrailer.

Dynamic Binding (cont.)

• Dynamic binding also applies to method calls on the
called object that occur within other methods.

• Example: the Truck class has the following toString method:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str = str + ", capacity = " + this.capacity;
str = str + ", " + this.getNumAxles() + " axles";
return str;

}

• The TractorTrailer class inherits it and does not override it.

• When toString is called on a TractorTrailer object:

• this Truck version of toString() will run

• the TractorTrailer version of getNumAxles()
will run when the code above is executed

The Power of Polymorphism

• Recall our printFleet method:
public static void printFleet(Vehicle[] fleet) {

for (int i = 0; i < fleet.length; i++) {
System.out.println(fleet[i]);

}
}

• polymorphism allows this method to use a single println
statement to print the appropriate info. for any kind of vehicle.

• Without polymorphism, we would need a large if-else-if:
if (fleet[i] is an Automobile) {

print the appropriate info for Automobiles
} else if (fleet[i] is a Truck) {

print the appropriate info for Trucks
} else if ...

• Polymorphism allows us to easily write code that works for
more than one type of object.

Polymorphism and the Object Class

• The Object class is a superclass of every other class.

• Thus, we can use an Object variable to store a reference
to any object.

Object o1 = "Hello World";
Object o2 = new Temperature(20, 'C');
Object o3 = new Taxi("Ford", "Tempo", 2000, "T253");

Summary and Extra Practice

• To determine if a method call is valid:

• start at the declared type

• go up the hierarchy as needed to see if you can find the
specified method in the declared type or a superclass

• if you don't find it, the method call is not valid

• Given the following:
TractorTrailer t1 = new TractorTrailer(…);
Vehicle v = new Truck(…);
MovingVan m = new MovingVan(…);
Truck t2 = new TractorTrailer(…);

• Which of the following are valid?
v.getNumAxles()
m.getNumAxles()
t1.getMake()
t1.isSleeper()
t2.isSleeper()

Truck
getNumAxles

TractorTrailer
getNumAxles
isSleeper

MovingVan

Vehicle
getMake

Summary and Extra Practice (cont.)

• To determine which version of a method will run (dynamic binding):

• start at the actual type

• go up the hierarchy as needed until you find the method

• the first version you encounter is the one that will run

• Given the following:
TractorTrailer t1 = new TractorTrailer(…);
Vehicle v = new Truck(…);
MovingVan m = new MovingVan(…);
Truck t2 = new TractorTrailer(…);

• Which version of the method will run?
m.getNumAxles()
t1.getNumAxles()
t2.getNumAxles()
v.getMake()
t2.getMake()

Truck
getNumAxles

TractorTrailer
getNumAxles
isSleeper

MovingVan

Vehicle
getMake

More Practice
public class E extends G {

public void method2() {
System.out.print("E 2 ");
this.method1();

}
public void method3() {

System.out.print("E 3 ");
this.method1();

}
}
public class F extends G {

public void method2() {
System.out.print("F 2 ");

}
}
public class G {

public void method1() {
System.out.print("G 1 ");

}
public void method2() {

System.out.print("G 2 ");
}

}
public class H extends E {

public void method1() {
System.out.print("H 1 ");

}
}

More Practice (cont.)

• Which of these would compile and which would not?
E e1 = new E();

E e2 = new H();

E e3 = new G();

E e4 = new F();

G g1 = new H();

G g2 = new F();

H h1 = new H();

• To answer these questions, draw the inheritance hierarchy:

Here are the classes again…
public class E extends G {

public void method2() {
System.out.print("E 2 ");
this.method1();

}
public void method3() {

System.out.print("E 3 ");
this.method1();

}
}
public class F extends G {

public void method2() {
System.out.print("F 2 ");

}
}
public class G {

public void method1() {
System.out.print("G 1 ");

}
public void method2() {

System.out.print("G 2 ");
}

}
public class H extends E {

public void method1() {
System.out.print("H 1 ");

}
}

More Practice (cont.)
E e1 = new E();
G g1 = new H();
G g2 = new F();

• Which of the following would compile and which would not?
For the ones that would compile, what is the output?

e1.method1();

e1.method2();

e1.method3();

g1.method1();

g1.method2();

g1.method3();

g2.method1();

g2.method2();

g2.method3();

G
method1
method2

F
method2

E
method2
method3

H
method1

