
Recursion

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 4, Part 3

Review: Method Frames

• When you make a method call, the Java runtime sets aside
a block of memory known as the frame of that method call.

• The frame is used to store:

• the formal parameters of the method

• any local variables - variables declared within the method

• A given frame can only be accessed by statements that are
part of the corresponding method call.

number otherNumber

main

Frames and the Stack
• The frames we've been speaking about are stored in a region

of memory known as the stack.

• For each method call, a new frame is added to the top of the
stack.

public class Foo {
public static int y(int i) {

int j = i * 3;
return j;

}
public static int x(int i) {

int j = i - 2;
return y(i + j);

}
public static void

main(String[] args) {
System.out.println(x(5));

}
}

• When a method completes, its stack frame is removed.

y(8)

x(5)
5i

j 3

args

8i

j 24

Iteration

• Whenever we've encountered a problem that requires repetition,
we've used iteration - i.e., some type of loop.

• Sample problem: printing the series of integers from
n1 to n2, where n1 <= n2.

• example: printSeries(5, 10) should print the following:

5, 6, 7, 8, 9, 10

• Here's an iterative solution to this problem:

public static void printSeries(int n1, int n2) {
for (int i = n1; i < n2; i++) {

System.out.print(i + ", ");
}
System.out.println(n2);

}

Recursion

• An alternative approach to problems that require repetition
is to solve them using a method that calls itself.

• Applying this approach to the print-series problem gives:

public static void printSeries(int n1, int n2) {
if (n1 == n2) {

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• A method that calls itself is a recursive method.

• This approach to problem-solving is known as recursion.

Tracing a Recursive Method

public static void printSeries(int n1, int n2) {
if (n1 == n2) {

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• What happens when we execute printSeries(5, 7)?

printSeries(5, 7):
System.out.print(5 + ", ");
printSeries(6, 7):

System.out.print(6 + ", ");
printSeries(7, 7):

System.out.println(7);
return

return
return

Recursive Problem-Solving
• When we use recursion, we solve a problem by reducing it

to a simpler problem of the same kind.

• We keep doing this until we reach a problem that is
simple enough to be solved directly.

• This simplest problem is known as the base case.

public static void printSeries(int n1, int n2) {
if (n1 == n2) { // base case

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• The base case stops the recursion, because it doesn't
make another call to the method.

Recursive Problem-Solving (cont.)

• If the base case hasn't been reached, we execute the
recursive case.

public static void printSeries(int n1, int n2) {
if (n1 == n2) { // base case

System.out.println(n2);
} else { // recursive case

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• The recursive case:

• reduces the overall problem to one or more simpler problems
of the same kind

• makes recursive calls to solve the simpler problems

Structure of a Recursive Method

recursiveMethod(parameters) {
if (stopping condition) {

// handle the base case
} else {

// recursive case:
// possibly do something here

recursiveMethod(modified parameters);

// possibly do something here
}

}

• There can be multiple base cases and recursive cases.

• When we make the recursive call, we typically use
parameters that bring us closer to a base case.

Tracing a Recursive Method: Second Example

public static void mystery(int i) {
if (i <= 0) { // base case

return;
}
// recursive case
System.out.println(i);
mystery(i - 1);
System.out.println(i);

}

• What happens when we execute mystery(2)?

Printing a File to the Console

• Here's a method that prints a file using iteration:

public static void print(Scanner input) {
while (input.hasNextLine()) {

System.out.println(input.nextLine());
}

}

• Here's a method that uses recursion to do the same thing:

public static void printRecursive(Scanner input) {
// base case
if (!input.hasNextLine()) {

return;
}

// recursive case
System.out.println(input.nextLine());
printRecursive(input); // print the rest

}

Printing a File in Reverse Order

• What if we want to print the lines of a file in reverse order?

• It's not easy to do this using iteration. Why not?

• It's easy to do it using recursion!

• How could we modify our previous method to make it
print the lines in reverse order?

public static void printRecursive(Scanner input) {
if (!input.hasNextLine()) { // base case

return;
}

String line = input.nextLine();
System.out.println(line);
printRecursive(input); // print the rest

}

Printing a File in Reverse Order (cont.)

• An iterative approach to reversing the file would need to:

• read all of the lines in the file and store them in a
temporary data structure (e.g., an array)

• retrieve the lines from the data structure and
print them in reverse order

• The recursive method doesn't need a separate data structure.

• the lines are stored in the stack frames for the
recursive method calls!

A Recursive Method That Returns a Value

• Simple example: summing the integers from 1 to n

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

• Example of this approach to computing the sum:

sum(6) = 6 + sum(5)
= 6 + 5 + sum(4)

…

Tracing a Recursive Method

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

• What happens when we execute int x = sum(3);

from inside the main() method?

Tracing a Recursive Method on the Stack

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

Example: sum(3)

return 0

time

3n
rest

2n
rest

1n
rest

0n
rest

3n
rest

2n
rest

1n
rest 0

3n
rest

2n
rest 1

3n
rest 3

3n
rest

3n
rest

2n
rest

3n
rest

2n
rest

1n
rest

return 1+0

return 2+1

base case

return 3+3

final result: 6

rest = sum(0)
= 0

The final result
gets built up
on the way back
from the base case!

Another Option for Tracing a Recursive Method

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

Infinite Recursion

• We have to ensure that a recursive method will eventually
reach a base case, regardless of the initial input.

• Otherwise, we can get infinite recursion.

• produces stack overflow - there's no room for
more frames on the stack!

• Example: here's a version of our sum() method that uses
a different test for the base case:

public static int sum(int n) {
if (n == 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

• what values of n would cause infinite recursion?

Designing a Recursive Method

1. Start by programming the base case(s).

• What instance(s) of this problem can I solve directly
(without looking at anything smaller)?

2. Find the recursive substructure.

• How could I use the solution to any smaller version
of the problem to solve the overall problem?

3. Solve the smaller problem using a recursive call!

• store its result in a variable

4. Do your one step.

• build your solution from the result of the recursive call

• use concrete cases to figure out what you need to do

Processing a String Recursively

• A string is a recursive data structure. It is either:

• empty ("")

• a single character, followed by a string

• Thus, we can easily use recursion to process a string.

• process one or two of the characters ourselves

• make a recursive call to process the rest of the string

• Example: print a string vertically, one character per line:

public static void printVertical(String str) {
if (str == null || str.equals("")) {

return;
}

System.out.println(str.charAt(0)); // first char
printVertical(str.substring(1)); // rest of string

}

Short-Circuited Evaluation

• The second operand of both the && and || operators
will not be evaluated if the result can be determined on the
basis of the first operand alone.

• expr1 || expr2

if expr1 evaluates to true, expr2 is not evaluated,
because we already know that expr1 || expr2 is true

• example from the last slide:
if (str == null || str.equals("")) {

return;
}

// if str is null, we won't check for empty string.
// This prevents a null pointer exception!

• expr1 && expr2

if expr1 evaluates to , expr2 is not evaluated,
because we already know that expr1 && expr2 is .

Counting Occurrences of a Character in a String

• numOccur(c, s) should return the number of times that
the character c appears in the string s

• numOccur('n', "banana") should return 2

• numOccur('a', "banana") should return 3

• Take the approach outlined earlier:

• base case: empty string (or null)

• delegate s.substring(1) to the recursive call

• we're responsible for handling s.charAt(0)

Applying the String-Processing Template

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) { // base case

return __________;
} else { // recursive case

int rest = __________________;
// do our one step!

}
}

Determining Our One Step

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
// do our one step!

• In our one step, we take care of s.charAt(0).

• we build the solution to the larger problem on the
solution to the smaller problem (in this case, rest)

• does what we do depend on the value of s.charAt(0)?

• Use concrete cases to figure out the logic!

Consider this concrete case…

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
// do our one step!
...

numOccur('r', "recurse")

numOccur('r', "recurse")
c = 'r', s = "recurse"

Consider Concrete Cases

numOccur('r', "recurse") # first char is a match

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem?
What is our one step?

numOccur('a', "banana") # first char is not a match

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem?
What is our one step?

Now complete the method!

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
if (s.charAt(0) == c) {

return ___________________;
} else {

return ___________________;
}

}
}

Tracing a Recursive Method on the Stack
public static int numOccur(char c, String s) {

if (s == null || s.equals("")) {
return 0;

} else {
int rest = numOccur(c, s.substring(1));
if (s.charAt(0) == c) {

return 1 + rest;
} else {

return rest;
}

}
}

numOccur('a', "aha")

time

"aha"s
rest

return 0

base case

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest 1

"ha"s
rest

"ha"s
rest

"ha"s
rest

"ha"s
rest

"ha"s
rest 1

"a"s
rest

"a"s
rest

"a"s
rest 0

""s
rest

return 1+0

return 1

return 1+1

The final result
gets built up
on the way back
from the base case!

Common Mistake

• This version of the method does not work:

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
}

int count = 0;
if (s.charAt(0) == c) {

count++;
}

numOccur(c, s.substring(1));
return count;

}

Another Faulty Approach

• Some people make count "global" to fix the prior version:

public static int count = 0;

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
}

if (s.charAt(0) == c) {
count++;

}

numOccur(c, s.substring(1));
return count;

}

• Not recommended, and not allowed on the problem sets!

• Problems with this approach?

Recursion vs. Iteration
• Some problems are much easier to solve using recursion.

• Other problems are just as easy to solve using iteration.

• Recursion is a bit more costly because of the overhead involved
in invoking a method.

• also: in some cases, there may not be room on the stack

• Rule of thumb:

• if it's easier to formulate a solution recursively, use recursion,
unless the cost of doing so is too high

• otherwise, use iteration

Extra Practice: A Recursive Palindrome Checker

• A palindrome is a string that reads the same forward and
backward.

• examples: "radar", "mom", "abcddcba"

• isPal(s) should return true if s is a palindrome,
and false otherwise.

• We need more than one base case. What are they?

• How should we reduce the problem in the recursive call?

Consider Concrete Cases!

isPal("radar")

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

isPal("modem")

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

A Recursive Palindrome Checker (cont.)

• Method definition (assuming no nulls):

public static boolean isPal(String s) {
int len = s.length();
if (len <= 1) {

return __________;

} else if (_________________________________) {

return __________;
} else {

boolean isPalRest = _________________________;

// do our one step!

}
}

