
File Processing

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 4, Part 2

A Class for Representing a File
• The File class in Java is used to represent a file on disk.

• To use it, we need to import the java.io package:
import java.io.*;

• Here's how we typically create a File object:
File f = new File("filename");

• Here are some useful methods from this class:

public boolean exists()
public boolean canRead()
public boolean canWrite()
public boolean delete()
public long length()
public String getName()
public String getPath()

See the Java API documentation for more info.

Review: Scanner Objects

• We've been using a Scanner object to read from the console:
Scanner console = new Scanner(System.in);

tells the constructor to
construct a Scanner object
that reads from the console

• Scanner methods:
next()

nextInt()

nextDouble()

nextLine()

Reading from a Text File

• We can also use a Scanner object to read from a text file:

File f = new File("filename");
Scanner input = new Scanner(f);

tells the constructor to
construct a Scanner object
that reads from the file

• We can combine the two lines above into a single line:
Scanner input = new Scanner(new File("filename"));

• We use a different name for the Scanner (input),
to stress that we're reading from an input file.

• All of the same Scanner methods can be used.

Scanner Lookahead and Files
• When reading a file, we often don't know how big the file is.

• Solution: use an indefinite loop and a Scanner "lookahead"
method.

• Basic structure:

Scanner input = new Scanner(new File(filename));

while (input.hasNextLine()) {
String line = input.nextLine();

// code to process the line goes here…
}

• hasNextLine() returns:

• true if there's at least one more line of the file to be read

• false if we've reached the end of the file

Sample Problem: Printing the Contents of a File
• Assume that we've already created a Scanner called input

that is connected to a file.

• Here's the code for printing its contents:

while (input.hasNextLine()) {
String line = input.nextLine();
System.out.println(line);

}

File-Processing Exceptions
• Recall: An exception is an error that occurs at runtime as a

result of some type of "exceptional" circumstance.

• We've seen several examples:
StringIndexOutOfBoundsException

IllegalArgumentException

TypeMismatchException

• When using a Scanner to process a file, we can get a
FileNotFoundException

• if the file that we specify isn't there

• if the file is inaccessible for some reason

Checked vs. Unchecked Exceptions
• Most of the exceptions we've seen thus far have been

unchecked exceptions.

• we do not need to handle them

• instead, we usually take steps to avoid them

• FileNotFoundException is a checked exception.
The compiler checks that we either:

1) handle it

2) declare that we don't handle it

• For now, we'll take option 2. We do this by adding a
throws clause to the header of any method in which a
Scanner for a file is created:

public static void main(String[] args)
throws FileNotFoundException {

Sample Program: Counting the Lines in a File
import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class CountLines {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("romeo.txt"));

int count = 0;
while (input.hasNextLine()) {

input.nextLine(); // read line and throw away
count++;

}

System.out.println("The file has " + count +
" lines.");

}
}

Counting Lines in a File, version 2
import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class CountLines {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Name of file: ");
String fileName = console.next();

Scanner input = new Scanner(new File(fileName));

int count = 0;
while (input.hasNextLine()) {

input.nextLine(); // read line and throw away
count++;

}

System.out.println("The file has " + count +
" lines.");

}
}

Counting Lines in a File, version 3
…
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Name of file: ");
String fileName = console.next();
System.out.println("The file has " +

numLines(fileName) + " lines.");
}

public static int numLines(String fileName)
throws FileNotFoundException {

Scanner input = new Scanner(new File(fileName));
int count = 0;
while (input.hasNextLine()) {

input.nextLine(); // read line and throw away
count++;

}
return count;

}

• We put the counting code in a separate method (numLines).

• Both numLines and main need a throws clause.

Extracting Data from a File

• Collections of data are often stored in a text file.

• Example: the results of a track meet might be summarized
in a text file that looks like this:

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Fran Flash,BU,800m,2:15:00
Tammy Turtle,UMass,800m,4:00:00

• Each line of the file represents a record.

• Each record is made up of multiple fields.

• In this case, the fields are separated by commas.

• known as a CSV file – comma separated values

• the commas serve as delimiters

• could also use spaces or tabs ('\t') instead of commas

Extracting Data from a File (cont.)

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Fran Flash,BU,800m,2:15:00
Tammy Turtle,UMass,800m,4:00:00

• We want a program that:

• reads in a results file like the one above

• extracts and prints only the results for a particular school

• with the name of the school omitted

• Basic approach:

• ask the user for the school of interest (the target school)

• read one line at a time from the file

• split the line into fields

• if the field corresponding to the school name matches
the target school, print out the other fields in that record

Splitting a String

• The String class includes a method named split().

• breaks a string into component strings

• takes a parameter indicating what delimiter should be
used when performing the split

• returns a String array containing the components

• Example:
String sentence = "How now brown cow?";
String[] words = sentence.split(" ");
System.out.println(words[0]);
System.out.println(words[3]);
System.out.println(words.length);

would output:

Extracting Data from a File (cont.)

import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class ExtractResults {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);

System.out.print("School to extract: ");
String targetSchool = console.nextLine();

Scanner input = new Scanner(new File("results.txt"));
while (input.hasNextLine()) {

String record = input.nextLine();
String[] fields = record.split(",");

if (fields[1].equals(targetSchool)) {
System.out.print(fields[0] + ",");
System.out.println(fields[2] + "," + fields[3]);

}
}

}
}

• How can we modify it to print a message when
no results are found for the target school?

Example Problem: Averaging Enrollments
• Let's say that we have a file showing how course enrollments

have changed over time:

cs111 90 100 120 115 140 170 130 135 125
cs105 14 8
cs108 40 35 30 42 38 26
cs101 180 200 175 190 200 230 160 154 120

• For each course, we want to compute the average enrollment.

• different courses have different numbers of values

• Initial pseudocode:
while (there is another course in the file) {

read the line corresponding to the course
split it into an array of fields
average the fields for the enrollments
print the course name and average enrollment

}

Example Problem: Averaging Enrollments (cont.)

cs108 40 35 30 42 38 26
cs111 90 100 120 115 140 170 130 135 125
cs105 14 8
cs101 180 200 175 190 200 230 160 154 120

• When we split a line into fields, we get an array of strings.

• example for the first line above:
{"cs108", "40", "35", "30", "42", "38", "26"}

• We can convert the enrollments from strings to integers using
a method called Integer.parseInt()

• example:
String[] fields = record.split(" ");
String courseName = fields[0];
int firstEnrollment = Integer.parseInt(fields[1]);

• note: parseInt() is a static method, so we call it using
its class name (Integer)

Example Problem: Averaging Enrollments (cont.)

Other Details About Reading Text Files

• Although we think of a text file as being two-dimensional
(like a piece of paper), the computer treats it as a
one-dimensional string of characters.

• example: the file containing these lines
Hello, world.
How are you?
I'm tired.

is represented like this:
Hello, world.\nHow are you?\nI'm tired.\n

• When reading a file using a Scanner, you are limited to
sequential accesses in the forward direction.

• you can't back up

• you can't jump to an arbitrary location

• to go back to the beginning of the file,
you need to create a new Scanner object.

Optional Extra Topic: Writing to a Text File
• To write to a text file, we can use a PrintStream object,

which has the same methods that we've used with System.out:
• print(), println()

• Actually, System.out is a PrintStream that has been
constructed to print to the console.

• To instantiate a PrintStream for a file:
File f = new File("filename");
PrintStream output = new PrintStream(f);

• We can also combine these two steps:
PrintStream output = new PrintStream(
new File("filename"));

• If there's an existing file with the same name, it will be overwritten.

Copying a Text File
import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class CopyFile {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Name of original file: ");
String original = console.next();
System.out.print("Name of copy: ");
String copy = console.next();

Scanner input = new Scanner(new File(original));
PrintStream output = new PrintStream(new File(copy));

while (input.hasNextLine()) {
String line = input.nextLine();
output.println(line);

}
}

}
• How could we combine the two lines
in the body of the while loop?

Our Track-Meet Program Revisited
import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class ExtractResults {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);

System.out.print("School to extract: ");
String targetSchool = console.nextLine();

Scanner input = new Scanner(new File("results.txt"));
while (input.hasNextLine()) {

String record = input.nextLine();
String[] fields = record.split(",");

if (fields[1].equals(targetSchool)) {
System.out.print(fields[0] + ",");
System.out.println(fields[2] + "," + fields[3]);

}
}

}
}

• How can we modify it to print the extracted results
to a separate file?

Optional Extra Topic: Binary Files

• Not all files are text files.

• Binary files don't store the string representation of non-string
values.

• instead, they store their binary representation – the way
they are stored in memory

• Example: 125

• the text representation of 125 stores the string "125" –
i.e., the characters for the individual digits in the number

• the binary representation of 125 stores the four-byte
binary representation of the integer 125

'1' '2' '5'

0 0 0 125

49 50 53

