
Arrays

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 4, Part 1

Collections of Data

• Recall our program for averaging quiz grades:
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;

while (true) {
System.out.print("Enter a grade (or -1 to quit): ");
int grade = console.nextInt();
if (grade == -1) {

break;
}
total += grade;
numGrades++;

}

if (numGrades > 0) {
...

}

• What if we wanted to store the individual grades?

• an example of a collection of data

Arrays

• An array is a collection of data values of the same type.

• In the same way that we think of a variable as a single box,
an array can be thought of as a sequence of boxes:

• Each box contains one of the data values in the collection

• referred to as the elements of the array

• Each element has a numeric index
• the first element has an index of 0,

the second element has an index of 1,
etc.

• example: the value 6 above has an index of 3

• like the index of a character in a String

7 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7 indices

elements

Declaring and Creating an Array

• We use a variable to represent the array as a whole.

• Example of declaring an array variable:

int[] grades;

• the [] indicates that it will represent an array

• the int indicates that the elements will be ints

• Declaring the array variable does not create the array.

• Example of creating an array:

grades = new int[8];

the length of the array –
i.e., the number of elements

Declaring and Creating an Array (cont.)

• We often declare and create an array in the same statement:

int[] grades = new int[8];

• General syntax:

type[] array = new type[length];

where

type is the type of the individual elements
array is the name of the variable used for the array
length is the number of elements in the array

The Length of an Array

• The length of an array is the number of elements in the array.

• The length of an array can be obtained as follows:

array.length

• example:
grades.length

• note: it is not a method

grades.length() won't work!

Auto-Initialization

• When you create an array in this way:

int[] grades = new int[8];

the runtime system gives the elements default values:

• The value used depends on the type of the elements:

int 0
double 0.0
char '\0'
boolean false

objects null

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

Accessing an Array Element

• To access an array element, we use an expression of the form

array[index]

• Examples:

grades[0] accesses the first element
grades[1] accesses the second element
grades[5] accesses the sixth element

• Here's one way of setting up the array we showed earlier:

int[] grades = new int[8];
grades[0] = 7; grades[1] = 8; grades[2] = 9;
grades[3] = 6; grades[4] = 10; grades[5] = 7;
grades[6] = 9; grades[7] = 5;

7 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7

Accessing an Array Element (cont.)

• Acceptable index values:

integers from 0 to array.length – 1

• If we specify an index outside that range, we'll get an
ArrayIndexOutOfBoundsException at runtime.

• example:

int[] grades = int[8];
grades[8] = 5;

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8
no such
element!

Accessing an Array Element (cont.)

• The index can be any integer expression.

• example:

int lastGrade = grades[grades.length – 1];

• We can operate on an array element in the same way that
we operate on any other variable of that type.

• example: applying a 10% late penalty to the grade
at index i

grades[i] = (int)(grades[i] * 0.9);

• example: adding 5 points of extra credit to the grade
at index i

grades[i] += 5;

Another Way to Create an Array

• If we know that we want an array to contain specific values,
we can specify them when create the array.

• Example: here's another way to create and initialize our
grades array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};

• The list of values is known as an initialization list.

• it can only be specified when the array is declared

• we don't use the new operator in this case

• we don't specify the length of the array – it is determined
from the number of values in the initialization list

• Other examples:

double[] heights = {65.2, 72.0, 70.6, 67.9};
boolean[] isPassing = {true, true, false, true};

Storing Grades Entered by the User

• We need to know how big to make the array.

• one way: ask the user for the maximum number of values
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("How many grades? ");
int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

int total = 0;
int numGrades = 0;

while (numGrades < maxNumGrades) {
System.out.print("Enter a grade (or -1 to quit): ");
grades[numGrades] = console.nextInt();
if (grades[numGrades] == -1) {

break;
}
total += grades[numGrades];
numGrades++;

}
...

}

Processing the Values in an Array

• We often use a for loop to process the values in an array.

• Example: print out all of the grades

int[] grades = new int[maxNumGrades];
...
for (int i = 0; i < grades.length; i++) {

System.out.println("grade " + i + ": " + grades[i]);
}

• General pattern:

for (int i = 0; i < array.length; i++) {
do something with array[i];

}

• Processing array elements sequentially from first to last
is known as traversing the array.

• noun = traversal

Another Example of Traversing an Array

• Let's write code to find the highest quiz grade in the array:

int max = __________________;

for (_________; _________________; ______) {

}

Another Example of Traversing an Array (cont.)

• Let's trace through our code:
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

i grades[i] max
7

1 8 8
2 9 9
3 6 9
4 10 10
5 7 10
...

7 8 9 6 10 7 9 5grades array:

Review: What Is a Variable?

• We've seen that a variable is like a named "box" in memory
that can be used to store a value.

int count = 10; count 10

• If a variable represents a primitive-type value, the value is
stored in the variable itself, as shown above.

Reference Variables

• If a variable represents an object, the object itself is
not stored inside the variable.

• Rather, the object is located somewhere else in memory, and
the variable holds the memory address of the object.

• we say that the variable stores a reference to the object

• such variables are called reference variables

Arrays and References

• An array is a type of object.

• Thus, an array variable is a reference variable.

• it stores a reference to the array

• Example:

int[] grades = new int[8];

might give the following picture:

• We usually use an arrow to represent a reference:

0 0 0 0 0 0 0 02000grades

memory location: 2000

0 0 0 0 0 0 0 0grades

Printing an Array

• What is the output of the following lines?
int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
System.out.println(grades);

• To print the contents of the array, we can use a for loop
as we showed earlier.

• We can also use the Arrays.toString() method,
which is part of Java's built in Arrays class.

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
System.out.println(Arrays.toString(grades));

• doing so produces the following output:
[7, 8, 9, 6, 10, 7, 9, 5]

• To use this method, we need to import the java.util package.

What is the output of the full program?
import java.util.*;

public class FunWithArrays {
public static void main(String[] args) {

int[] temps = {51, 50, 36, 29, 30};
int first = temps[0];
int numTemps = temps.length;
int last = temps[numTemps - 1];

temps[2] = 40;
temps[3] += 5;
System.out.println(temps[3]);
System.out.println(Arrays.toString(temps));

}
}

first

last

numTemps

temps

output:

Copying References

• When we assign the value of one reference variable to
another, we copy the reference to the object.
We do not copy the object itself.

• Example involving objects:

String s1 = "hello, world";
String s2 = s1;

s2

s1
"hello, world"

Copying References (cont.)

• An example involving an array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = grades;

• Given the lines of code above, what will the lines below print?

other[2] = 4;
System.out.println(grades[2] + " " + other[2]);

other

grades 7 8 9 6 10 7 9 5

Changing the Internals vs. Changing a Variable

• When two variables hold a reference to the same array...

int[] list1 = {7, 8, 9};
int[] list2 = list1;

• ...if we change the internals of the array,
both variables will "see" the change:

list2[2] = 4;
System.out.println(Arrays.toString(list1));

list2

list1 7 8 9

list2

list1 7 8 4 output of println:

Changing the Internals vs. Changing a Variable (cont.)

• When two variables hold a reference to the same array...

int[] list1 = {7, 8, 9};
int[] list2 = list1;

• ...if we change one of the variables itself,
that does not change the other variable:

list2 = new int[3];
System.out.println(Arrays.toString(list1));

list2

list1 7 8 9

list2

list1 7 8 9

0 0 0

output of println:

Null References

• To indicate that a reference variable doesn't yet refer to any
object, we can assign it a special value called null.

int[] grades = null;
String s = null;

grades null s null

• Attempting to use a null reference to access an object
produces a NullPointerException.

• "pointer" is another name for reference

• examples:
int[] grades = null;
String s = null;
grades[3] = 10; // NullPointerException!
char ch = s.charAt(5); // NullPointerException!

Copying an Array

• To actually create a copy of an array, we can:
• create a new array of the same length as the first
• traverse the arrays and copy the individual elements

• Example:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[grades.length];
for (int i = 0; i < grades.length; i++) {

other[i] = grades[i];
}

• What do the following lines print now?
other[2] = 4;
System.out.println(grades[2] + " " + other[2]);

other

grades 7 8 9 6 10 7 9 5

7 8 9 6 10 7 9 5

Programming Style Point

• Here's how we copied the array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[grades.length];
for (int i = 0; i < grades.length; i++) {

other[i] = grades[i];
}

• This would also work:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[8];
for (int i = 0; i < 8; i++) {

other[i] = grades[i];
}

• Why is the first way better?

Passing an Array to a Method

• Let's put our code for finding the highest grade into a method:

public class GradeAnalyzer {

public static _______ maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

_____________________;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

System.out.println("max grade = " +

________________________________);

Passing an Array to a Method (cont.)

• What's wrong with this alternative approach?

public class GradeAnalyzer {

public static int maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

return max;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

maxGrade(grades);
System.out.println("max grade = " + max);

Passing an Array to a Method (cont.)

• We could do this instead:

public class GradeAnalyzer {

public static int maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

return max;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

int max = maxGrade(grades);
System.out.println("max grade = " + max);

Finding the Average Value in an Array

• Here's a method that computes the average grade:

public static double averageGrade(int[] grades) {
int total = 0;
for (int i = 0; i < grades.length; i++) {

total += grades[i];
}

return (double)total / grades.length;
}

Testing If An Array Meets Some Condition

• Let's say that we need to be able to determine
if there are any grades below a certain cutoff value.

• e.g., to determine if a retest should be given

• Does this method work?

public static boolean
anyGradesBelow(int[] grades, int cutoff) {

for (int i = 0; i < grades.length; i++) {
if (grades[i] < cutoff) {

return true;
} else {

return false;
}

}
}

Testing If An Array Meets Some Condition (cont.)

• We can return true as soon as we find a grade that
is below the threshold.

• We can only return false if none of the grades is below.

• Here is a corrected version:

public static boolean
anyGradesBelow(int[] grades, int cutoff) {

for (int i = 0; i < grades.length; i++) {
if (grades[i] < cutoff) {

return true;
}

}

// if we get here, none of the grades is below.
return false;

}

Testing If An Array Meets Some Condition (cont.)

• Here's a similar problem: write a method that determines
if all of the grades are perfect (assume perfect = 100).

public static boolean allPerfect(int[] grades) {

}

Using an Array to Count Things

• Let's say that we want to count how many times each of the
possible grade values appears in a collection of grades.

• We can use an array to store the counts.

• counts[i] will store the number of times that the grade i
appears

• for this grades array

we would have this array of counts:

10 8 9 6 10 7 9 5

0 0 0 0 0 1 1 2 1 2 1

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

Using an Array to Count Things (cont.)

• The size of the counts array should be one more than the
maximum value being counted:

int max = maxGrade(grades);
int[] counts = new int[max + 1];

• Given the array, here's how to do the actual counting:

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

10 8 9 6 10 7 9 5

0 0 0 0 0 1 1 2 1 2 1

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

Using an Array to Count Things (cont.)

• Let's trace through this code for the grades array shown above:

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

i grades[i] operation performed

10 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

A Method That Returns an Array

• We can write a method to create and return the array of counts:

public static int[] getCounts(int[] grades, int maxGrade) {
int[] counts = new int[maxGrade + 1];
for (int i = 0; i < grades.length; i++) {

counts[grades[i]]++;
}

return counts;
}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = getCounts(grades, max);
...

}

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void triple(int[] n) {
for (int i = 0; i < n.length; i++) {

n[i] = n[i] * 3;
}

}

• When a method is passed
an array as a parameter,
it gets a copy of the reference,
not a copy of the array.

• If the method changes the internals
of the array, those changes will
be there after the method returns.

Using a Method to Change an Array's Contents

n

a

main

1 2 3

triple

Using a Method to Change an Array's Contents (cont.)

n

a

main

1 2 3

a

main

1 2 3

triple

before method call

during method call

a

main

3 6 9

after method call

a

main

3 6 9

triple

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void triple(int[] n) {
for (int i = 0; i < n.length; i++) {

n[i] = n[i] * 3; // changes internals
}

}

• If the method changes the internals
of the array, those changes will
be there after the method returns.

n

a

main

1 2 3

triple

Changing the Internals vs. Changing a Variable

3 6 9

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void method2(int[] n) {
n = new int[3]; // changes the variable

}

• However, if the method changes
its variable for the array, that
change does not affect the
original array.

• Changing what's in one
variable doesn't affect
any other variable!

n

a

main

1 2 3

method2

Changing the Internals vs. Changing a Variable (cont.)

x

0 0 0

Swapping Elements in an Array
• We sometimes need to be able to swap two elements in an array.

• Example:

• What's wrong with this code for swapping the two values?

arr[2] = arr[5];
arr[5] = arr[2];

• it gives this:

arr 35 6 19 23 3 47 9 15

arr 35 6 47 23 3 19 9 15

arr 35 6 47 23 3 47 9 15

0 1 2 3 4 5 6 7

Swapping Elements in an Array (cont.)

• To perform a swap, we need to use a temporary variable:
int temp = arr[2];
arr[2] = arr[5];
arr[5] = temp;

arr 35 6 19 23 3 47 9 15

19temp

0 1 2 3 4 5 6 7

arr 35 6 47 23 3 47 9 15

19temp

0 1 2 3 4 5 6 7

arr 35 6 47 23 3 19 9 15

19temp

0 1 2 3 4 5 6 7

A Method for Swapping Elements
• Here's a method for swapping the elements at positions i and j

in the array arr:
public static void swap(int[] arr, int i, int j) {

int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

• We don't need to return anything, because the method changes
the internals of the array that is passed in.

• Here's an example of how we would use it:
int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
swap(grades, 2, 5);
System.out.println(Arrays.toString(grades));

• What would the output be?

Recall: A Method That Returns an Array

• We can write a method to create and return the array of counts:

public static int[] getCounts(int[] grades, int maxGrade) {
int[] counts = new int[maxGrade + 1];
for (int i = 0; i < grades.length; i++) {

counts[grades[i]]++;
}

return counts;
}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = getCounts(grades, max);
...

}

An Alternative Approach for the Array of Counts

• Create the array ahead of time and pass it into the method:

public static void getCounts(int[] grades, int[] counts) {

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = new int[max];
getCounts(grades, counts);
...

}

• Because the method changes the internals of the array,
those changes will be there after the method returns.

Shifting Values in an Array

• Let's say a small business is using an array to store the
number of items sold over a 10-day period.

numSold[0] gives the number of items sold today
numSold[1] gives the number of items sold 1 day ago
numSold[2] gives the number of items sold 2 days ago
…
numSold[9] gives the number of items sold 9 days ago

numSold 15 8 19 2 5 8 11 18 7 16

Shifting Values in an Array (cont.)

• At the start of each day, it's necessary to shift the values over
to make room for the new day's sales.

• the last value is lost, since it's now 10 days old

• In order to shift the values over, we need to perform
assignments like the following:

numSold[9] = numSold[8];
numSold[6] = numSold[5];
numSold[2] = numSold[1];

• what is the general form (the pattern) of these assignments?

numSold 15 8 19 2 5 8 11 18 7 16

numSold 0 15 8 19 2 5 8 11 18 7

Shifting Values in an Array (cont.)

• Here's one attempt at code for shifting all of the elements:

for (int i = 0; i < numSold.length; i++) {
numSold[i] = numSold[i - 1];

}

• If we run this, we get an ArrayIndexOutOfBoundsException.
Why?

Shifting Values in an Array (cont.)

• This version of the code eliminates the exception:

for (int i = 1; i < numSold.length; i++) {
numSold[i] = numSold[i – 1];

}

• Let's trace it to see what it does:

• when i == 1, we perform numSold[1] = numSold[0] to get:

• when i == 2, we perform numSold[2] = numSold[1] to get:

this obviously doesn't work!

numSold 15 8 19 2 5 8 11 18 7 16

numSold 15 15 19 2 5 8 11 18 7 16

numSold 15 15 15 2 5 8 11 18 7 16

Shifting Values in an Array (cont.)

• How can we fix this code so that it does the right thing?

for (int i = 1; i < numSold.length; i++) {
numSold[i] = numSold[i – 1];

}

for (; ;) {

}

• After performing all of the shifts, we would do: numSold[0] = 0;

numSold 0 15 8 19 2 5 8 11 18 7

numSold 15 15 8 19 2 5 8 11 18 7

"Growing" an Array

• Once we have created an array, we can't increase its size.

• Instead, we need to do the following:

• create a new, larger array (use a temporary variable)

• copy the contents of the original array into the new array

• assign the new array to the original array variable

• Example for our grades array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
...
int[] temp = new int[16];
for (int i = 0; i < grades.length; i++) {

temp[i] = grades[i];
}
grades = temp;

Arrays of Objects

• We can use an array to represent a collection of objects.

• In such cases, the cells of the array store references to
the objects.

• Example:

String[] suitNames = {"clubs", "spades",
"hearts", "diamonds"};

suitNames

"clubs" "spades" "hearts" "diamonds"

Two-Dimensional Arrays

• Thus far, we've been looking at single-dimensional arrays

• We can also create multi-dimensional arrays.

• The most common type is a two-dimensional (2-D) array.

• We can visualize it as a matrix consisting of rows and columns:

0 15 8 3 16 12 7 9 5

1 6 11 9 4 1 5 8 13

2 17 3 5 18 10 6 7 21

3 8 14 13 6 13 12 8 4

4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7 column
indices

row
indices

2-D Array Basics

• Example of declaring and creating a 2-D array:

int[][] scores = new int[5][8];

• To access an element, we use an expression of the form

array[row][column]

• example: scores[3][4] gives the score at row 3, column 4

number
of rows

number
of columns

0 15 8 3 16 12 7 9 5

1 6 11 9 4 1 5 8 13

2 17 3 5 18 10 6 7 21

3 8 14 13 6 13 12 8 4

4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7

Example Application: Maintaining a Game Board

• For a Tic-Tac-Toe board, we could use a 2-D array to keep
track of the state of the board:

char[][] board = new char[3][3];

• Alternatively, we could create and initialize it as follows:

char[][] board = {{' ', ' ', ' '},
{' ', ' ', ' '},
{' ', ' ', ' '}};

• If a player puts an X in the middle square, we could record
this fact by making the following assignment:

board[1][1] = 'X';

An Array of Arrays

• A 2-D array is really an array of arrays!

• scores[0] represents the entire first row
scores[1] represents the entire second row, etc.

• array.length gives the number of rows
array[row].length gives the number of columns in that row

15 8 3 16 12 7 9 5

6 11 9 4 1 5 8 13

17 3 5 18 10 6 7 21

8 14 13 6 13 12 8 4

1 9 5 16 20 2 3 9

scores

Processing All of the Elements in a 2-D Array

• To perform some operation on all of the elements in a 2-D
array, we typically use a nested loop.

• example: finding the maximum value in a 2-D array.

public static int maxValue(int[][] arr) {
int max = arr[0][0];
for (int r = 0; r < arr.length; r++) {

for (int c = 0; c < arr[r].length; c++) {
if (arr[r][c] > max) {

max = arr[r][c];
}

}
}

return max;
}

Optional: Other Multi-Dimensional Arrays

• It's possible to have a "ragged" 2-D array in which different
rows have different numbers of columns:

int[][] foo = {{11, 22, 33},
{7, 20, 30, 40},
{1, 2}};

• We can also create arrays of higher dimensions.

• example: a three-dimensional matrix:

double[][][] matrix = new double[2][5][4];

11 22 33

10 20 30 40

1 2

foo

