Unit 3, Part 3

Conditional Execution

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Review: Simple Conditional Execution in Java

if (condition) { if (condition) {
true block true block

} else { }
false block

}

 If the condition is true:
 the statement(s) in the true block are executed
+ the statement(s) in the false block (if any) are skipped

+ If the condition is false:
 the statement(s) in the false block (if any) are executed
+ the statement(s) in the true block are skipped

Example: Analyzing a Number

Scanner console = new Scanner(System.in);
System.out.print("Enter an integer: ");
int num = console.nextInt();

if (num % 2 == 0) {
System.out.printin(num +
} else {
System.out.printlnCnum + " 1is odd.");
ks

is even.");

Flowchart for an if-else Statement

true false

true block false block

Common Mistake

You should not put a semi-colon after an if-statement header:

if (num % 2 == 0); {
System.out.println(.);

The semi-colon ends the 1if statement.
* thus, it has an empty true block

The println and other statements are independent of
the 1f statement, and always execute.

Choosing at Most One of Several Options

Consider this code:

if (num < 0) {
System.out.println("The number is negative.™);
3

if (num > 0) {
System.out.println("The number 1is positive.");

ks
if (num == 0) {
System.out.println("The number is zero.");

}

All three conditions are evaluated, but at most one of them
can be true (in this case, exactly one).

Choosing at Most One of Several Options (cont.)

We can do this instead:

if (num < 0) {
System.out.println("The number is negative.™);
}

else if (num > 0) {
System.out.println("The number 1is positive.");

ks
else if (num == 0) {
System.out.println("The number is zero.");

}
If the first condition is true, it will skip the second and third.

If the first condition is false, it will evaluate the second, and
if the second condition is true, it will skip the third.

If the second condition is false, it will evaluate the third, etc.

Choosing at Most One of Several Options (cont.)

We can also make things more compact as follows:

if (num < 0) {

System.out.println("The number is negative.™);
} else if (num > 0) {

System.out.println("The number 1is positive.");
} else if (num == 0) {

System.out.println("The number is zero.");

}

This emphasizes that the entire thing is one compound
statement.

if-else if Statements

+ Syntax:
if (condition1) {
true block for condition1
} else if (condition2) {
true block for condition2

}
} else {

false block for all of the conditions
}

« The conditions are evaluated in order.
The true block of the first true condition is executed.
All of the remaining conditions and their blocks are skipped.

» If no condition is true, the false block (if any) is executed.

Flowchart foran if-else if Statement

true block 1]—
true block 2]—

fa]sel

E false block]

¥

next statement }:

¥

Choosing Exactly One Option

» Consider again this code fragment:
if (num < 0) {

System.out.println("The number is negative.™);
} else if (num > 0) {

System.out.println("The number 1is positive.");
} else if (num == 0) {

System.out.println("The number is zero.");

}

* One of the conditions must be true, so we can omit the last one:
if (num < 0) {

System.out.println("The number is negative.™);
} else if (num > 0) {

System.out.println("The number 1is positive.");
} else {

System.out.println("The number is zero.");

}

Types of Conditional Execution

If it want to execute any number of several conditional blocks,
use sequential if statements:
if (hum < 0) {
System.out.println("The number 1is negative.");
}

if (hum % 2 == 0) {
System.out.printin("The number 1is even.");
3

* If you want to execute at most one (i.e., 0 or 1) of several
blocks, use an if-else if statement ending in else if:
if (num < 0) {

System.out.printin("The number is negative.");
} else if (num > 0) {

System.out.printin("The number is positive.");
}

If you want to execute exactly one of several blocks, use an
if-elseif ending in just else (see bottom of last slide).

Find the Logic Error

Scanner console = new Scanner(System.in);

System.out.print("Enter the student's score:

int score

= console.nextInt();

String grade;

if (score
grade

if (score
grade

if (score
grade

if (score
grade

if (score
grade

>= 90) {
— IIAII;
>= 80) {
— IIBII;
>= 70) {
— IICII;
>= 60) {
— IIDII;
< 60) {
= llFll;

")

Review: Variable Scope

* Recall: the scope of a variable is the portion of a program
in which the variable can be used.

» By default, the scope of a variable:
* begins at the point at which it is declared

* ends at the end of the innermost block that encloses the

declaration

* Because of these rules, a variable cannot be used outside

of the block in which it is declared.

Variable Scope and if-else statements

* The following program will produce compile-time errors:

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("enter a positive int: ");
int num = console.nextInt();
if (num < 0) {
System.out.printin("number is negative;"
+ " using its absolute value™);
double sqrt = Math.sqrt(num * -1);
} else {
sqrt = Math.sqrt(num);

}
System.out.println("square root = " + sqrt);
}
* Why?

Variable Scope and if-else statements (cont.)

To eliminate the errors, declare the variable outside of
the true block:

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("enter a positive int: ");
int num = console.nextInt();
double sqrt;
if (num < 0) {
System.out.printin("number is negative;"

+ " using its absolute value");

sqrt = Math.sqrt(num * -1);
} else {
sqrt = Math.sqrt(num);
3
System.out.println("square root = " + sqrt);

}

What is the scope of sqrt now?

Review: Loop Patterns for n Repetitions
« Thus far, we've mainly used for loops to repeat something
a definite number of times.

+ We've seen two different patterns for this:
+ pattern 1:

for (Gint i =0; i <n; i++) {
statements to repeat
}

+ pattern 2:

for (int i =1; i <= n; i++) {
statements to repeat

}

Another Loop Pattern: Cumulative Sum

» We can also use a for loop to add up a set of numbers.

» Basic pattern (using pseudocode):

sum = 0

for (all of the numbers that we want to sum) {
num the next number
sum sum + num

Example of Using a Cumulative Sum

public class GradeAverager {
public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("number of grades? ");
int numGrades = console.nextInt();

if (numGrades <= 0) {
System.out.printin("nothing to average");
} else {
int sum = 0;
for (int 1 = 1; i <= numGrades; i++) {
System.out.print("grade #" + i + ": ");
int grade = console.nextInt();
sum = sum + grade;
}
System.out.printin("The average is " +
(doubTe)sum / numGrades);

}

* Note the use of an if-else statement to handle invalid
user inputs.

Tracing Through a Cumulative Sum

» Let's trace through this code.

int sum = 0;

for (int i = 1; i <= numGrades; i++) {
System.out.print("grade #" + i + ": ");
int grade = console.nextInt();
sum = sum + grade;

}
assuming that the user enters these grades: 80, 90, 84.

numGrades = 3

i 1 <= numGrades grade sum

Conditional Execution and Return Values

» With conditional execution, it's possible to write a method
with more than one return statement.
* example:
pubTlic static int min(int a, int b) {

if (a < b) {
return a;

} else {
return b;

3

}
* Only one of the return statements is executed.

* As soon as you reach a return statement, the method's
execution stops and the specified value is returned.

* the rest of the method is not executed

Conditional Execution and Return Values (cont.)

+ Instead of writing the method this way:
pubTlic static int min(int a, int b) {

if (a < b) {
return a;
} else {
return b;
}

}

we could instead write it like this, without the else:

pubTlic static int min(int a, int b) {
if (a < b) {
return a;
3

return b;

}

* Why is this equivalent?

Conditional Execution and Return Values (cont.)

Consider this method, which has a compile-time error:

public static int compare(int a, int b) {
if (a < b) {
return -1;
} else if (a > b) {
return 1;
} else if (a == b) {
return 0O;
3

Because all of the return statements are connected
to conditions, the compiler worries that no value

will be returned.

Conditional Execution and Return Values (cont.)

* Here's one way to fix it:
pubTlic static int compare(int a, int b) {

if (a < b) {
return -1;

} else if (a > b) {
return 1;

} else {
return O;

}

Conditional Execution and Return Values (cont.)

* Here's another way:

public static int compare(int a, int b) {
if (a < b) {
return -1;
} else if (a > b) {
return 1;
3

return O;

}

» Both fixes allow the compiler to know for certain that
a value will always be returned.

Returning From a void Method

public static void repeat(string msg, int n) {
if (n <= 0) { // special cases
return;
}

for (int i =0; i <n; i++) {
System.out.println(msg);
}

}

* Note that this method has a return type of void.
* it doesn't return a value.

* However, it still has a return statement.
« used to break out of the method
* note that there's nothing between the return and the ;

Testing for Equivalent Primitive Values

« The == and != operators are used when comparing primitives.
e int, double, char, etc.

+ Example:
Scanner console = new Scanner(System.in);

System.out.print("Do you have another (y/n)? ");
char choice = console.next().charAt(0);

if (choice == 'y') { // this works just fine
processItem();
} else if (choice == 'n') {
return;
} else {
System.out.printin("invalid input");
3
Testing for Equivalent Objects
« The == and != operators do not typically work

when comparing objects. (We'll see why this is later.)

+ Example:
Scanner console = new Scanner(System.in);
System.out.print("regular or diet? ");
String choice = console.next();

if (choice == "regular") { // doesn't work
processRegular();
} else {
3
o choice == "regular" compiles, but it evaluates to false,

even when the user does enter "regular"!

Testing for Equivalent Objects (cont.)

* We use a special method called the equals method
to test if two objects are equivalent.
* example:

Scanner console = new Scanner(System.in);

System.out.print("regular or diet? ");

String choice = console.next();

if (choice.equals("regular")) {
processRegular();

} else {

}

« choice.equals("regular") compares the string represented
by the variable choice with the string "regular"

 returns true when they are equivalent
+ returns false when they are not

equalsIgnorecCase()

+ We often want to compare two strings without paying attention
to the case of the letters.
+ example: we want to treat as equivalent:
"regular"

"Regular"
"REGULAR"

etc.

* The string class has a method called equalsIgnorecCase that
can be used for this purpose:

if (choice.equalsignorecase("regular")) {

}

Example Problem: Ticket Sales
» Different prices for balcony seats and orchestra seats

* Here are the rules:
» persons younger than 25 receive discounted prices:
 $20 for balcony seats
 $35 for orchestra seats
* everyone else pays the regular prices:
« $30 for balcony seats
« $50 for orchestra seats

* Assume only valid inputs.

Ticket Sales Program: main method

Scanner console = new Scanner(System.1in);
System.out.print("Enter your age: ");
int age = console.nextInt();

if (age < 25) {
// handle people younger than 25

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;

if (choice.equalsIgnorecCase("orchestra™)) {
price = 35;

} else {
price = 20;

}

System.out.printin("The price is $" + price);
} else {

// handle people 25 and older

Ticket Sales Program: main method (cont.)

} else {
// handle people 25 and older
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;

if (choice.equalsIgnorecCase("orchestra™)) {
price = 50;

} else {
price = 30;

}

System.out.printin("The price is $" + price);

Where |s the Code Duplication?

if (age < 25) {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;

if (choice.equalsIgnoreCase("orchestra™)) {
price = 35;

} else {
price = 20;

}

System.out.printin("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");

String choice = console.next(Q);

int price;

if (choice.equalsIgnoreCase("orchestra")) {
price = 50;

} else {
price = 30;

}

System.out.println("The price is $" + price);

Factoring Out Code Common to Multiple Cases

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();

if (age < 25) {

int price;

if (choice.equalsIgnoreCase("orchestra™)) {
price = 35;

} else {
price = 20;

}

} else {

int price;

if (choice.equalsIgnoreCase("orchestra")) {
price = 50;

} else {
price = 30;

}

b
System.out.println("The price is $" + price);

What Other Change Is Needed?

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();

if (age < 25) {

int price;

if (choice.equalsIgnoreCase("orchestra™)) {
price = 35;

} else {
price = 20;

}

} else {

int price;

if (choice.equalsIgnoreCase("orchestra")) {
price = 50;

} else {
price = 30;

}

b
System.out.println("The price is $" + price);

Now Let's Make It Structured

public static void main(string[] args) {
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();
int price;

if (age < 25) {

} else {

1

System.out.println("The price 1is $" + price);
}
public static ___ discountPrice(
}

) o

Expanded Ticket Sales Problem

* One additional case:

* persons younger than 13 cannot buy a ticket

* persons whose age is 13-24 receive discounted prices:
 $20 for balcony seats
 $35 for orchestra seats

* everyone else pays the regular prices:
« $30 for balcony seats
« $50 for orchestra seats

System.out.print("orchestra or balcony? ");
String choice = console.next(Q);

int price;

if (choice.equalsIgnorecase("orchestra™)) {
price = 35;

} else {
price = 20;

}

System.out.printin("The price is $" + price);

} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;

if (choice.equalsIgnorecCase("orchestra")) {
price = 50;

} else {
price = 30;

}

System.out.printin("The price is $" + price);

Here's the Unfactored Version

if (age < 13) {
System.out.println("You cannot buy a ticket.");
} else if (age < 25) {

We now have code
common to the

2nd and 3 cases,
but not the 1st.

Group the Second and Third Cases Together

if (age < 13) {
System.out.println("You cannot buy a ticket.");
} else {

if (age < 25) {

System.out.print("orchestra or balcony? ");

String choice = console.next(Q);

int price;

if (choice.equalsIgnorecase("orchestra")) {
price = 35;

} else {
price = 20;

}

System.out.printin("The price is $" + price);

} else {

System.out.print("orchestra or balcony? ");

String choice = console.next(Q);

System.out.printin("The price is $" + price);

Then Factor Out the Common Code

if (age < 13) {
System.out.println("You cannot buy a ticket.");
} else {
System.out.print("orchestra or balcony? ");
string choice = console.next(Q);

int price;
if (age < 25) {
if (choice.equalsIgnorecase("orchestra")) {

price = 35;

} else {
price = 20;

}

} else {

if (choice.equalsIgnorecase("orchestra")) {
price = 50;

} else {
price = 30;

}

}

System.out.printin("The price is $" + price);

Case Study: Coffee Shop Price Calculator

* Relevant info:
» brewed coffee prices by size:
« tiny: $1.60
+ medio: $1.80
+ gigundo: $2.00

* latte prices by size:
« tiny: $2.80
» medio: $3.20
 gigundo: $3.60
plus, add 50 cents for a latte with flavored syrup

« sales tax:
» students: no tax
* non-students: 6.25% tax

Case Study: Coffee Shop Price Calculator (cont.)

+ Developing a solution:
1. Begin with an unstructured solution.
+ everything in the main method
+ use if-else-if statement(s) to handle the various cases

2. Next, factor out code that is common to multiple cases.

» put it either before or after the appropriate
if-else-if statement

3. Finally, create a fully structured solution.

* use procedural decomposition to capture
logical pieces of the solution

Case Study: Coffee Shop Price Calculator (cont.)

Optional: Comparing Floating-Point Values

» Because the floating-point types have limited precision, it's
possible to end up with roundoff errors.

+ Example:

double sum = 0.1 + 0.1 + 0.1 + 0.1 + 0.1;
sum = sum + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;
System.out.printin(sum);

// get 0.9999999999999999!

+ Thus when trying to determine if two floating-point values are
equal, we usually do not use the == operator.

* |Instead, we test if the difference between the two values is

less than some small threshold value:
threshold

if (Math.abs(sum - 1.0) < 0.0000001) {
System.out.printin(sum + " == 1.0");
b

Optional: Another Cumulative Computation

» The same pattern can be used for other types of computations.
« Example: counting the occurrences of a character in a string.

* Let's write a static method called numoccur that does this.

* examples:
numoccur('1', "hello™) should return 2
numoccur('s', "Mississippi") should return 4

public static ___ numoccur() {

