
Conditional Execution

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 3, Part 3

Review: Simple Conditional Execution in Java

if (condition) {

true block
} else {

false block
}

• If the condition is true:

• the statement(s) in the true block are executed

• the statement(s) in the false block (if any) are skipped

• If the condition is false:

• the statement(s) in the false block (if any) are executed

• the statement(s) in the true block are skipped

if (condition) {

true block
}

Example: Analyzing a Number

Scanner console = new Scanner(System.in);
System.out.print("Enter an integer: ");
int num = console.nextInt();

if (num % 2 == 0) {
System.out.println(num + " is even.");

} else {
System.out.println(num + " is odd.");

}

Flowchart for an if-else Statement

next statement

true false
condition

false blocktrue block

Common Mistake

• You should not put a semi-colon after an if-statement header:

if (num % 2 == 0); {
System.out.println(…);
...

}

• The semi-colon ends the if statement.

• thus, it has an empty true block

• The println and other statements are independent of
the if statement, and always execute.

Choosing at Most One of Several Options

• Consider this code:

if (num < 0) {
System.out.println("The number is negative.");

}
if (num > 0) {

System.out.println("The number is positive.");
}
if (num == 0) {

System.out.println("The number is zero.");
}

• All three conditions are evaluated, but at most one of them
can be true (in this case, exactly one).

Choosing at Most One of Several Options (cont.)

• We can do this instead:

if (num < 0) {
System.out.println("The number is negative.");

}
else if (num > 0) {

System.out.println("The number is positive.");
}
else if (num == 0) {

System.out.println("The number is zero.");
}

• If the first condition is true, it will skip the second and third.

• If the first condition is false, it will evaluate the second, and
if the second condition is true, it will skip the third.

• If the second condition is false, it will evaluate the third, etc.

Choosing at Most One of Several Options (cont.)

• We can also make things more compact as follows:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else if (num == 0) {

System.out.println("The number is zero.");
}

• This emphasizes that the entire thing is one compound
statement.

if-else if Statements

• Syntax:

if (condition1) {

true block for condition1

} else if (condition2) {

true block for condition2
}

…

} else {

false block for all of the conditions
}

• The conditions are evaluated in order.
The true block of the first true condition is executed.
All of the remaining conditions and their blocks are skipped.

• If no condition is true, the false block (if any) is executed.

Flowchart for an if-else if Statement

false block

false

true
condition1 true block 1

false

true
condition2 true block 2

...

false

next statement

Choosing Exactly One Option

• Consider again this code fragment:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else if (num == 0) {

System.out.println("The number is zero.");
}

• One of the conditions must be true, so we can omit the last one:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else {

System.out.println("The number is zero.");
}

Types of Conditional Execution

• If it want to execute any number of several conditional blocks,
use sequential if statements:
if (num < 0) {

System.out.println("The number is negative.");
}
if (num % 2 == 0) {

System.out.println("The number is even.");
}

• If you want to execute at most one (i.e., 0 or 1) of several
blocks, use an if-else if statement ending in else if:
if (num < 0) {

System.out.println("The number is negative.");
} else if (num > 0) {

System.out.println("The number is positive.");
}

• If you want to execute exactly one of several blocks, use an
if-else if ending in just else (see bottom of last slide).

Find the Logic Error

Scanner console = new Scanner(System.in);

System.out.print("Enter the student's score: ");
int score = console.nextInt();

String grade;
if (score >= 90) {

grade = "A";
}
if (score >= 80) {

grade = "B";
}
if (score >= 70) {

grade = "C";
}
if (score >= 60) {

grade = "D";
}
if (score < 60) {

grade = "F";
}

Review: Variable Scope

• Recall: the scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable:

• begins at the point at which it is declared

• ends at the end of the innermost block that encloses the
declaration

• Because of these rules, a variable cannot be used outside
of the block in which it is declared.

Variable Scope and if-else statements

• The following program will produce compile-time errors:

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("enter a positive int: ");
int num = console.nextInt();
if (num < 0) {

System.out.println("number is negative;"
+ " using its absolute value");

double sqrt = Math.sqrt(num * -1);
} else {

sqrt = Math.sqrt(num);
}
System.out.println("square root = " + sqrt);

}

• Why?

Variable Scope and if-else statements (cont.)

• To eliminate the errors, declare the variable outside of
the true block:

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("enter a positive int: ");
int num = console.nextInt();
double sqrt;
if (num < 0) {

System.out.println("number is negative;"
+ " using its absolute value");

sqrt = Math.sqrt(num * -1);
} else {

sqrt = Math.sqrt(num);
}
System.out.println("square root = " + sqrt);

}

• What is the scope of sqrt now?

Review: Loop Patterns for n Repetitions
• Thus far, we've mainly used for loops to repeat something

a definite number of times.

• We've seen two different patterns for this:

• pattern 1:

for (int i = 0; i < n; i++) {

statements to repeat
}

• pattern 2:

for (int i = 1; i <= n; i++) {

statements to repeat
}

Another Loop Pattern: Cumulative Sum

• We can also use a for loop to add up a set of numbers.

• Basic pattern (using pseudocode):

sum = 0
for (all of the numbers that we want to sum) {

num = the next number
sum = sum + num

}

Example of Using a Cumulative Sum
public class GradeAverager {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("number of grades? ");
int numGrades = console.nextInt();

if (numGrades <= 0) {
System.out.println("nothing to average");

} else {
int sum = 0;
for (int i = 1; i <= numGrades; i++) {

System.out.print("grade #" + i + ": ");
int grade = console.nextInt();
sum = sum + grade;

}

System.out.println("The average is " +
(double)sum / numGrades);

}
}

}

• Note the use of an if-else statement to handle invalid
user inputs.

Tracing Through a Cumulative Sum

• Let's trace through this code.
int sum = 0;
for (int i = 1; i <= numGrades; i++) {

System.out.print("grade #" + i + ": ");
int grade = console.nextInt();
sum = sum + grade;

}

assuming that the user enters these grades: 80, 90, 84.

numGrades = 3

i i <= numGrades grade sum

Conditional Execution and Return Values

• With conditional execution, it's possible to write a method
with more than one return statement.

• example:
public static int min(int a, int b) {

if (a < b) {
return a;

} else {
return b;

}
}

• Only one of the return statements is executed.

• As soon as you reach a return statement, the method's
execution stops and the specified value is returned.

• the rest of the method is not executed

Conditional Execution and Return Values (cont.)

• Instead of writing the method this way:

public static int min(int a, int b) {
if (a < b) {

return a;
} else {

return b;
}

}

we could instead write it like this, without the else:

public static int min(int a, int b) {
if (a < b) {

return a;
}
return b;

}

• Why is this equivalent?

Conditional Execution and Return Values (cont.)

• Consider this method, which has a compile-time error:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
} else if (a == b) {

return 0;
}

}

• Because all of the return statements are connected
to conditions, the compiler worries that no value
will be returned.

Conditional Execution and Return Values (cont.)

• Here's one way to fix it:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
} else {

return 0;
}

}

Conditional Execution and Return Values (cont.)

• Here's another way:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
}

return 0;
}

• Both fixes allow the compiler to know for certain that
a value will always be returned.

Returning From a void Method

public static void repeat(String msg, int n) {
if (n <= 0) { // special cases

return;
}

for (int i = 0; i < n; i++) {
System.out.println(msg);

}
}

• Note that this method has a return type of void.

• it doesn't return a value.

• However, it still has a return statement.

• used to break out of the method

• note that there's nothing between the return and the ;

Testing for Equivalent Primitive Values

• The == and != operators are used when comparing primitives.

• int, double, char, etc.

• Example:
Scanner console = new Scanner(System.in);

...
System.out.print("Do you have another (y/n)? ");
char choice = console.next().charAt(0);
if (choice == 'y') { // this works just fine

processItem();
} else if (choice == 'n') {

return;
} else {

System.out.println("invalid input");
}

Testing for Equivalent Objects

• The == and != operators do not typically work
when comparing objects. (We'll see why this is later.)

• Example:
Scanner console = new Scanner(System.in);
System.out.print("regular or diet? ");
String choice = console.next();
if (choice == "regular") { // doesn't work

processRegular();
} else {

...
}

• choice == "regular" compiles, but it evaluates to false,
even when the user does enter "regular"!

Testing for Equivalent Objects (cont.)

• We use a special method called the equals method
to test if two objects are equivalent.

• example:
Scanner console = new Scanner(System.in);
System.out.print("regular or diet? ");
String choice = console.next();
if (choice.equals("regular")) {

processRegular();
} else {

...
}

• choice.equals("regular") compares the string represented
by the variable choice with the string "regular"

• returns true when they are equivalent

• returns false when they are not

equalsIgnoreCase()

• We often want to compare two strings without paying attention
to the case of the letters.

• example: we want to treat as equivalent:
"regular"

"Regular"
"REGULAR"

etc.

• The String class has a method called equalsIgnoreCase that
can be used for this purpose:

if (choice.equalsIgnoreCase("regular")) {

...

}

Example Problem: Ticket Sales

• Different prices for balcony seats and orchestra seats

• Here are the rules:

• persons younger than 25 receive discounted prices:

• $20 for balcony seats

• $35 for orchestra seats

• everyone else pays the regular prices:

• $30 for balcony seats

• $50 for orchestra seats

• Assume only valid inputs.

Ticket Sales Program: main method

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

if (age < 25) {
// handle people younger than 25
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

// handle people 25 and older
...

}

Ticket Sales Program: main method (cont.)

...

} else {
// handle people 25 and older
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

Where Is the Code Duplication?...

if (age < 25) {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

Factoring Out Code Common to Multiple Cases

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();

if (age < 25) {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

} else {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

}

System.out.println("The price is $" + price);

What Other Change Is Needed?

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();

if (age < 25) {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

} else {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

}

System.out.println("The price is $" + price);

Now Let's Make It Structured

public static void main(String[] args) {
...

int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();
int price;

if (age < 25) {

__;
} else {

…
}

System.out.println("The price is $" + price);
}
public static ________ discountPrice(__________________) {

}

Expanded Ticket Sales Problem

• One additional case:

• persons younger than 13 cannot buy a ticket

• persons whose age is 13-24 receive discounted prices:

• $20 for balcony seats

• $35 for orchestra seats

• everyone else pays the regular prices:

• $30 for balcony seats

• $50 for orchestra seats

Here's the Unfactored Version...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else if (age < 25) {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

We now have code
common to the
2nd and 3rd cases,
but not the 1st.

Group the Second and Third Cases Together
...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else {
if (age < 25) {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

...

System.out.println("The price is $" + price);
}

}

Then Factor Out the Common Code
...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (age < 25) {

if (choice.equalsIgnoreCase("orchestra")) {
price = 35;

} else {
price = 20;

}
} else {

if (choice.equalsIgnoreCase("orchestra")) {
price = 50;

} else {
price = 30;

}
}

System.out.println("The price is $" + price);
}

Case Study: Coffee Shop Price Calculator

• Relevant info:

• brewed coffee prices by size:

• tiny: $1.60

• medio: $1.80

• gigundo: $2.00

• latte prices by size:

• tiny: $2.80

• medio: $3.20

• gigundo: $3.60

plus, add 50 cents for a latte with flavored syrup

• sales tax:

• students: no tax

• non-students: 6.25% tax

Case Study: Coffee Shop Price Calculator (cont.)

• Developing a solution:

1. Begin with an unstructured solution.

• everything in the main method

• use if-else-if statement(s) to handle the various cases

2. Next, factor out code that is common to multiple cases.

• put it either before or after the appropriate
if-else-if statement

3. Finally, create a fully structured solution.

• use procedural decomposition to capture
logical pieces of the solution

Case Study: Coffee Shop Price Calculator (cont.)

Optional: Comparing Floating-Point Values

• Because the floating-point types have limited precision, it's
possible to end up with roundoff errors.

• Example:

double sum = 0.1 + 0.1 + 0.1 + 0.1 + 0.1;
sum = sum + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;
System.out.println(sum);
// get 0.9999999999999999!

• Thus when trying to determine if two floating-point values are
equal, we usually do not use the == operator.

• Instead, we test if the difference between the two values is
less than some small threshold value:

if (Math.abs(sum – 1.0) < 0.0000001) {
System.out.println(sum + " == 1.0");

}

threshold

Optional: Another Cumulative Computation

• The same pattern can be used for other types of computations.

• Example: counting the occurrences of a character in a string.

• Let's write a static method called numOccur that does this.

• examples:

numOccur('l', "hello") should return 2

numOccur('s', "Mississippi") should return 4

public static ___ numOccur(_____________________) {

}

