
Methods with Parameters
and Return Values

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 3, Part 1

Review: Static Methods
• We've seen how we can use static methods to:

1. capture the structure of a program – breaking a task
into subtasks

2. eliminate code duplication 

• Thus far, our methods have been limited in their ability 
to accomplish these tasks.



A Limitation of Simple Static Methods
• For example, in our DrawTorch program, there are several
for loops that each print a series of spaces, such as:

for (int i = 0; i < 4 - line; i++) {
System.out.print(" ");

}

for (int i = 0; i < line - 1; i++) {
System.out.print(" ");

}

• However, despite the fact that all of these loops print spaces,
we can't replace them with a method that looks like this:

public static void printSpaces() {
…

Why not?

Parameters
• In order for a method that prints spaces to be useful, 

we need one that can print an arbitrary number of spaces.

• Such a method would allow us to write commands like these:

printSpaces(5);

printSpaces(4 - line);

where the number of spaces to be printed is specified 
between the parentheses.

• To do so, we write a method that has a parameter:

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}



Parameters (cont.)

• A parameter is a special type of variable that allows us 
to pass information into a method.

• Consider again this method:
public static void printSpaces(int numSpaces) {

for (int i = 0; i < numSpaces; i++) {
System.out.print(" ");

}
}

• When we execute a method call like

printSpaces(10);

the expression specified between the parentheses: 

• is evaluated

• is assigned to the parameter 

• can thereby be used by the code inside the method

Parameters (cont.)

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}

• Here's an example with a more 
complicated expression:

int line = 2;
printSpaces(4 - line);

4 - 2
2



A Note on Terminology
• The term parameter is used for both:

• the variable specified in the method header

• known as a formal parameter

• the value that you specify when you make the method call

• known as an actual parameter

• also known as an argument

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}

printSpaces(10);

actual parameter / argument

formal parameter

Parameters and Generalization
• Parameters allow us to generalize a task.

• They allow us to write one method that can perform
a family of related tasks – instead of writing a separate
method for each separate task.

print5Spaces()

print10Spaces()

print20Spaces()

print100Spaces()

…

printSpaces(parameter)



Representing Individual Characters

• So far we've learned about two data types: 

• int

• double

• The char type is used to represent individual characters.

• To specify a char literal, we surround the character 
by single quotes:

• examples:    'a'  'Z'  '0'  '7'  '?'  '\\'

• can only represent single characters

• don’t use double-quotes!

"a" is a string, not a character

Methods with Multiple Parameters

• Here's a method with more than one parameter:

public static void printChars(char ch, int num) {
for (int i = 0; i < num; i++) {

System.out.print(ch);
}

}

• Example of calling this method:

printChars(' ', 10);

• Notes:

• the parameters (both formal and actual) are separated 
by commas

• each formal parameter must be preceded by its type

• the actual parameters are evaluated and assigned to
the corresponding formal parameters



Example of Using a Method with Parameters
public static void drawFlame() {

for (int line = 1; line <= 4; line++) {
for (int i = 0; i < 4 - line; i++) {

System.out.print(" ");
}
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}
System.out.println();

}
}

public static void drawFlame() {
for (int line = 1; line <= 4; line++) {

printChars(' ', 4 - line);
printChars('(', line);
printChars(')', line);
System.out.println();

}
}

replace nested loops with method calls

Recall: Variable Scope

• The scope of a variable is the portion of a program 
in which the variable can be used.

• By default, the scope of a variable in Java:

• begins at the point at which it is declared

• ends at the end of the innermost block 
that encloses the declaration

public static void printResults(int a, int b) {
System.out.println("Here are the stats:");

int sum = a + b;
System.out.print("sum = ");
System.out.println(sum);

double avg = (a + b) / 2.0;
System.out.print("average = ");
System.out.println(avg);

}

scope of 
avg

scope of sum



• What about the parameters of a method?

• they do not follow the default scope rules!

• their scope is limited to their method

Special Case: Parameters and Variable Scope

public class MyClass {
public static void printResults(int a, int b) {

System.out.println("Here are the stats:");

int sum = a + b;
System.out.print("sum = ");
System.out.println(sum);

double avg = (a + b) / 2.0;
System.out.print("average = ");
System.out.println(avg);

}

static int c = a + b;     // does not compile!
}

scope 
of 

a and b

Practice with Scope
public static void drawRectangle(int height) {

for (int i = 0; i < height; i++) {

//  which variables could be used here?
int width = height * 2;
for (int j = 0; j < width; j++) {

System.out.print("*");

//  what about here?    
}

//  what about here?    
System.out.println();

}
// what about here?

}

public static void repeatMessage(int numTimes) {

//  what about here?     
for (int i = 0; i < numTimes; i++) {

System.out.println("What is your scope?");
}     

}



Practice with Parameters
public static void printValues(int a, int b) {   

System.out.println(a + " " + b);             
b = 2 * a;                                    
System.out.println("b" + b);                 

}

public static void main(String[] args) {          
int a = 2;                                   
int b = 3;                                   
printValues(b, a);       
printValues(7, b * 3);
System.out.println(a + " " + b);

}

• What's the output?

A Limitation of Parameters

• Parameters allow us to pass values into a method.

• They don't allow us to get a value out of a method.



A Limitation of Parameters (cont.)

• Example: using a method to compute the opposite of a number

• This won't work:

public static void opposite(int number) {
number = number * -1;

}

public static void main(String[] args) {
// read in points from the user

opposite(points);
…

}

• the opposite method changes the value of  number, 
but  number can't be used outside of that method

• the method doesn't change the value of  points

Methods That Return a Value

• To compute the opposite of a number, we need a method 
that's able to return a value.

• Such a method would allow us to write statements like this:

int penalty = opposite(points);

• The value returned by the method would replace
the method call in the original statement.

• Example:

int points = 10;
int penalty = opposite(points);

int penalty = -10;  // after the method completes



Defining a Method that Returns a Value

• Here's a method that computes and returns the opposite
of a number:

public static int opposite(int number) {
return number * -1;

}

• In the header of the method,  void is replaced by  int,
which is the type of the returned value.

• The returned value is specified using a return statement.
Syntax:

return expression;

• expression is evaluated

• the resulting value replaces the method call in
the statement that called the method

Defining a Method that Returns a Value (cont.)

• The complete syntax for the header of a static method is:

public static returnType name(type1 param1, type2 param2, …)

• Note: a method call is a type of expression!

• it evaluates to its return value

int opp = opposite(10);

int opp = -10;

• In our earlier methods, the return type was always void:

public static void printSpaces(int numSpaces) {
...

This is a special return type that indicates that no value 
is returned.



Flow of Control with Methods That Return a Value

• The flow of control jumps to a method until it returns.

• The flow jumps back, and the returned value replaces the call. 

• Example:

int num = 10;
int opp = opposite(num);
System.out.println(opp);

int num = 10;

int opp = opposite(num);

System.out.println(opp);

method instruction 1

method instruction 2
.
.
.

return statement

after the method returns

Flow of Control with Methods That Return a Value

• The flow of control jumps to a method until it returns.

• The flow jumps back, and the returned value replaces the call.

• Example:

int num = 10;
int opp = opposite(num);
System.out.println(opp);

int opp = -10;

method instruction 1

method instruction 2
.
.
.

return statementSystem.out.println(opp);

after the method returns

int num = 10;



Returning vs. Printing

• Instead of returning a value, we could write a method 
that prints the value:

public static void printOpposite(int number) {
System.out.println(number * -1);

}

• However, a method that returns a value is typically 
more useful.

• With such a method, you can still print the value by printing 
what the method returns:

System.out.println(opposite(num));

• the return value replaces the method call and is printed

• In addition, you can do other things besides printing:

int penalty = opposite(num);

Practice: Computing the Volume of a Cone

• volume of a cone = base * height
3

• Let's write a method named coneVol for computing it.

• parameters and their types?

• return type?

• method definition:

public static ________ coneVol(___________________________) {

}



The Math Class

• Java's built-in  Math class contains static methods for 
mathematical operations.

• These methods return the result of applying the operation 
to the parameters.

• Examples:

round(double value) – returns the result of rounding
value to the nearest integer

abs(double value) – returns the absolute value of value

pow(double base, double expon) – returns the result
of raising base to the expon power

sqrt(double value) – returns the square root of value

• For other examples, use the Java API on the Resources page.

The Math Class (cont.)

• To use a static method defined in another class,
we need to use the name of the class when we call it.

• We use what's known as dot notation.

• Syntax:

ClassName.methodName(param1, param2, …)

• Example:

double maxVal = Math.pow(2, numBits - 1) – 1;

class 
name

method 
name

actual 
parameters



*** Common Mistake ***

• Consider this alternative opposite method:

public static int opposite(int number) {
number = number * -1;
return number;

}

• What's wrong with the following code that uses it?

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
opposite(number);
System.out.print("opposite = ");
System.out.println(number);

}

Keeping Track of Variables

• Consider again the alternative opposite method:

public static int opposite(int number) {
number = number * -1;
return number;

}

• Here's some code that uses it correctly:

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
...

}

• There are two different variables named number.
How does the runtime system distinguish between them?

• More generally, how does it keep track of variables?



Keeping Track of Variables (cont.)

• When you make a method call, the Java runtime sets aside
a block of memory known as the frame of that method call.

• The frame is used to store:

• the formal parameters of the method

• any local variables – variables declared within the method

• A given frame can only be accessed by statements that are
part of the corresponding method call.

note: we're ignoring main's parameter for nownumber otherNumber

main

• When a method (method1) calls another method (method2), 
the frame of method1 is set aside temporarily.

• method1's frame is "covered up" by the frame of method2

• example: after main calls opposite, we get:

main

maxOfThree

a b c max

• When the runtime system encounters a variable, it uses 
the one from the current frame (the one on top).

• When a method returns, its frame is removed, which 
"uncovers" the frame of the method that called it.

Keeping Track of Variables (cont.)

number otherNumber

number

main

opposite



Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

main
• A frame is created

for the main method.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

10

number otherNumber

main



Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

10

number otherNumber

main

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

main

opposite • A frame is created
for the opposite method,
and that frame "covers
up" the frame for main.



Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

10

main

opposite • The actual parameter
is passed in and is
assigned to the formal
parameter.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

10

main

opposite



Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return number;

}
}

number otherNumber

number

-10

main

opposite

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10

number otherNumber

main
• opposite returns,

which removes its frame.

• The variable number
in main's frame hasn't 
been changed!



Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10

number otherNumber

main
• The returned value

replaces the 
method call.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10 -10

number otherNumber

main



Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10 -10

number otherNumber

main

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(-10);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

• main returns, which
removes its frame.



Practice

• What is the output of the following program?

public class MethodPractice {
public static int triple(int x) {

x = x * 3;
return x;

}

public static void main(String[] args) {
int y = 2;
y = triple(y);
System.out.println(y);
triple(y);
System.out.println(y);

}
}

More Practice

public class Mystery {
public static int foo(int x, int y) {

y = y + 1;
x = x + y;
System.out.println(x + " " + y);
return x;

}

public static void main(String[] args) {
int x = 2;
int y = 0;

y = foo(y, x);
System.out.println(x + " " + y);

foo(x, x);
System.out.println(x + " " + y);

System.out.println(foo(x, y));
System.out.println(x + " " + y);

}
}

foo
x  |  y

main
x  |  y

output



From Unstructured to Structured
public class TwoTriangles {

public static void main(String[] args) {
char ch = '*';      // character used in printing
int smallBase = 5;  // base length of smaller triangle

// Print the small triangle.
for (int line = 1; line <= smallBase; line++) {

for (int i = 0; i < line; i++) {
System.out.print(ch);

}
System.out.println();

}

// Print the large triangle.
for (int line = 1; line <= 2 * smallBase; line++) {

for (int i = 0; i < line; i++) {
System.out.print(ch);

}
System.out.println();

}
}

}

From Unstructured to Structured (cont.)

public class TwoTriangles {
public static void main(String[] args) {

char ch = '*';      // character used in printing
int smallBase = 5;  // base length of smaller triangle

// Print the small triangle.

printTriangle(_________________________________);

// Print the large triangle. 

printTriangle(_________________________________);
}

public static void printTriangle(_______________________) {

}
}


