
Primitive Data, Variables,
and Expressions;

Simple Conditional Execution

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 2, Part 1

Overview of the Programming Process

Analysis/Specification

Design

Implementation

Testing/Debugging

Example Problem: Adding Up Your Change

• Let's say that we have a bunch of coins of various types,
and we want to figure out how much money we have.

• Let’s begin the process of developing a program that
does this.

Step 1: Analysis and Specification

• Analyze the problem (making sure that you understand it),
and specify the problem requirements clearly and
unambiguously.

• Describe exactly what the program will do, without worrying
about how it will do it.

Step 2: Design

• Determine the necessary algorithms (and possibly other
aspects of the program) and sketch out a design for them.

• This is where we figure out how the program will solve
the problem.

• Algorithms are often designed using pseudocode.

• more informal than an actual programming language

• allows us to avoid worrying about the syntax of the language

• example for our change-adder problem:

get the number of quarters
get the number of dimes
get the number of nickels
get the number of pennies
compute the total value of the coins
output the total value

Step 3: Implementation

• Translate your design into the programming language.

pseudocode  code

• We need to learn more Java before we can do this!

• Here's a portion or fragment of a Java program for computing
the value of a particular collection of coins:

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• In a moment, we'll use this fragment to examine some of the
fundamental building blocks of a Java program.

Step 4: Testing and Debugging
• A bug is an error in your program.

• Debugging involves finding and fixing the bugs.

• Testing – trying the programs on a variety of inputs –
helps us to find the bugs.

The first program bug! Found by Grace Murray Hopper at Harvard.
(http://www.hopper.navy.mil/grace/grace.htm)

Overview of the Programming Process

Analysis/Specification

Design

Implementation

Testing/Debugging

Program Building Blocks: Literals
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• Literals specify a particular value.

• They include:

• string literals: "Your total in cents is:"

• are surrounded by double quotes

• numeric literals: 25 3.1416

• commas are not allowed!

Program Building Blocks: Variables
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• We've already seen that variables are named memory locations
that are used to store a value:

• Variable names must follow the rules for identifiers
(see previous notes).

10quarters

Program Building Blocks: Statements
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• In Java, a single-line statement typically ends with a semi-colon.

• Later, we will see examples of statements that contain other
statements!

Program Building Blocks: Expressions
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• Expressions are pieces of code that evaluate to a value.

• They include:

• literals, which evaluate to themselves

• variables, which evaluate to the value that they represent

• combinations of literals, variables, and operators:

25*quarters + 10*dimes + 5*nickels + pennies

Program Building Blocks: Expressions (cont.)

• Numerical operators include:

+ addition

- subtraction

* multiplication

/ division

% modulus or mod: gives the remainder of a division

example: 11 % 3 evaluates to 2

• Operators are applied to operands:

25 * quarters (2 * length) + (2 * width)

operands
of the * operator operands

of the + operator

Evaluating Expressions

• With expressions that involve more than one mathematical
operator, the usual order of operations applies.

• example:
3 + 4 * 3 / 2 – 7

=

=

=

=

• Use parentheses to:

• force a different order of evaluation

• example:
radius = circumference / (2 * pi);

• make the standard order of operations obvious!

Evaluating Expressions with Variables

• When an expression includes variables, they are first
replaced with their current value.

• Example: recall our code fragment:

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
= 25* 10 + 10* 3 + 5* 7 + 6
= 250 + 10* 3 + 5* 7 + 6
= 250 + 30 + 5* 7 + 6
= 250 + 30 + 35 + 6
= 280 + 35 + 6
= 315 + 6
= 321

println Statements Revisited
• Recall our earlier syntax for println statements:

System.out.println("text");

• Here is a more complete version:

System.out.println(expression);

• Examples:

System.out.println(3.1416);
System.out.println(2 + 10 / 5);
System.out.println(cents); // a variable
System.out.println("cents"); // a string

any type of expression,
not just text

println Statements Revisited (cont.)

• The expression is first evaluated, and then the value is printed.

System.out.println(2 + 10 / 5);

System.out.println(4); // output: 4

System.out.println(cents);

System.out.println(321); // output: 321

System.out.println("cents");

System.out.println("cents"); // output: cents

• Note that the surrounding quotes are not displayed when
a string is printed.

println Statements Revisited (cont.)

• Another example:

System.out.println(10*dimes + 5*nickels);

System.out.println(10*3 + 5*7);

System.out.println(65);

Data Types

• A data type is a set of related data values.

• examples:

• integers

• strings

• characters

• Every data type in Java has a name that we can use
to identify it.

Commonly Used Data Types for Numbers

• int

• used for integers

• examples: 25 -2

• double

• used for real numbers (ones with a fractional part)

• examples: 3.1416 -15.2

• used for any numeric literal with a decimal point,
even if it's an integer:

5.0

• also used for any numeric literal written in scientific notation

3e8 -1.60e-19

more generally:

n x 10p is written nep

Incorrect Change-Adder Program
/*
* ChangeAdder.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder {
public static void main(String[] args) {

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);

}
}

Declaring a Variable

• Java requires that we specify the type of a variable before
attempting to use it.

• This is called declaring the variable.

• syntax:

type name;

• examples:
int count; // will hold an integer
double area; // will hold a real number

• A variable declaration can also include more than one
variable of the same type:

int quarters, dimes;

Assignment Statements

• Used to give a value to a variable.

• Syntax:

variable = expression;

= is known as the assignment operator.

• Examples:
int quarters = 10; // declaration plus assignment

// declaration first, assignment later
int cents;
cents = 25*quarters + 10*dimes + 5*nickels + pennies;

// can also use to change the value of a variable
quarters = 15;

Corrected Change-Adder Program
/*
* ChangeAdder.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);

}
}

Assignment Statements (cont.)

• Steps in executing an assignment statement:

1) evaluate the expression on the right-hand side of the =

2) assign the resulting value to the variable on the
left-hand side of the =

• Examples:
int quarters = 10;

int quarters = 10; // 10 evaluates to itself!

int quartersValue = 25 * quarters;

int quartersValue = 25 * 10;

int quartersValue = 250;

Assignment Statements (cont.)

• An assignment statement does not create a permanent
relationship between variables.

• Example: consider the following code fragment
int x = 10;
int y = x + 2;
System.out.println(y);
x = 20;
System.out.println(y);

• changing the value of x does not change the value of y!

• You can only change the value of a variable by assigning it
a new value.

it outputs:

Assignment Statements (cont.)

• As the values of variables change, it can be helpful to picture
what's happening in memory.

• Examples:

int num1;
int num2 = 120; num1 ? num2 120

after the assignment at left, we get:

num1 = 50; num1 50 num2 120

num1 = num2 * 2; num1 240 num2 120
120 * 2

240

num2 = 60; num1 240 num2 60

undefined

The value of num1 is unchanged!

Assignment Statements (cont.)

• A variable can appear on both sides of the assignment
operator!

• Example (fill in the missing values):

int sum = 13;
int val = 30; sum 13 val 30

sum = sum + val; sum val

val = val * 2; sum val

Operators and Data Types

• Each data type has its own set of operators.

• the int version of an operator produces an int result

• the double version produces a double result

• etc.

• Rules for numeric operators:

• if the operands are both of type int,
the int version of the operator is used.

• examples: 15 + 30

1 / 2

25 * quarters

• if at least one of the operands is of type double,
the double version of the operator is used.

• examples: 15.5 + 30.1

1 / 2.0

25.0 * quarters

Incorrect Extended Change-Adder Program
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);
double dollars = cents / 100;
System.out.print("total in dollars is: ");
System.out.println(dollars);

}
}

Two Types of Division

• The int version of the / operator performs integer division,
which discards the fractional part of the result
(i.e., everything after the decimal).

• examples:

expression value

5 / 3 1

11 / 5 2

• The double version of the / operator performs
floating-point division, which keeps the fractional part.

• examples:

expression value

5.0 / 3.0 1.6666666666666667

11 / 5.0 2.2

How Can We Fix Our Program?
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);
double dollars = cents / 100;
System.out.print("total in dollars is: ");
System.out.println(dollars);

}
}

String Concatenation

• The meaning of the + operator depends on the types of
the operands.

• When at least one of the operands is a string, the + operator
performs string concatenation.

• combines two or more strings into a single string

• example:

System.out.println("hello " + "world");

is equivalent to
System.out.println("hello world");

String Concatenation (cont.)

• If one operand is a string and the other is a number,
the number is converted to a string and then concatenated.

• example: instead of writing
System.out.print("total in cents: ");
System.out.println(cents);

we can write
System.out.println("total in cents: " + cents);

• Here's how the evaluation occurs:
int cents = 321;
System.out.println("total in cents: " + cents);

"total in cents: " + 321
"total in cents: " + "321"
"total in cents: 321"

Change-Adder Using String Concatenation
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("total in cents is: " + cents);
double dollars = cents / 100.0;
System.out.println("total in dollars is: " +

dollars);
}

}

An Incorrect Program for Computing a Grade
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = pointsEarned / possiblePoints * 100;
System.out.println("The grade is: " + grade);

}
}

• What is the output?

Will This Fix Things?
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = pointsEarned / possiblePoints * 100.0;
System.out.println("The grade is: " + grade);

}
}

Type Casts

• To compute the percentage, we need to tell Java to treat
at least one of the operands as a double.

• We do so by performing a type cast:

grade = (double)pointsEarned / possiblePoints * 100;

or

grade = pointsEarned / (double)possiblePoints * 100;

• General syntax for a type cast:

(type)variable

Corrected Program for Computing a Grade
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = (double)pointsEarned / possiblePoints * 100;
System.out.println("The grade is: " + grade);

}
}

Evaluating a Type Cast

• Example of evaluating a type cast:

pointsEarned = 13;
possiblePoints = 15;

grade = (double)pointsEarned / possiblePoints * 100;
(double)13 / 15 * 100;

13.0 / 15 * 100;
0.8666666666666667 * 100;
86.66666666666667;

• Note that the type cast occurs after the variable is replaced
by its value.

• It does not change the value that is actually stored in the variable.

• in the example above, pointsEarned is still 13

Type Conversions

• Java will automatically convert values from one type
to another provided there is no potential loss of information.

• Example: we can perform the following assignment
without a type cast:

double d = 3;

• the JVM will convert the integer value 3 to the
floating-point value 3.0 and assign that value to d

• any int can be assigned to a double without losing
any information

variable of
type double

value of
type int

Type Conversions (cont.)

• The compiler will complain if the necessary type conversion
could (at least in some cases) lead to a loss of information:

int i = 7.5; // won't compile

• This is true regardless of the actual value being converted:
int i = 5.0; // won't compile

• To make the compiler happy in such cases, we need to
use a type cast:

double area = 5.7;
int approximateArea = (int)area;
System.out.println(approximateArea);

• what would the output be?

variable of
type int

value of
type double

Type Conversions (cont.)

• When an automatic type conversion is performed as part of
an assignment, the conversion happens after the evaluation
of the expression to the right of the =.

• Example:
double d = 1 / 3;

= 0; // uses integer division. why?

= 0.0;

A Block of Code

• A block of code is a set of statements that is treated as a
single unit.

• In Java, a block is typically surrounded by curly braces.

• Examples:

• each class is a block

• each method is a block

public class MyProgram {
public static void main(String[] args) {

int i = 5;
System.out.println(i * 3);
int j = 10;
System.out.println(j / i);

}
}

Variable Scope

• The scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable in Java:

• begins at the point at which it is declared

• ends at the end of the innermost block
that encloses the declaration

public class MyProgram2 {
public static void main(String[] args) {

System.out.println("Welcome!");
System.out.println("Let's do some math!");
int j = 10;
System.out.println(j / 5);

}
}

• Because of these rules, a variable cannot be used outside
of the block in which it is declared.

scope of j

Another Example

public class MyProgram3 {
public static void method1() {

int i = 5;
System.out.println(i * 3);
int j = 10;
System.out.println(j / i);

}

public static void main(String[] args) {
// The following line won't compile.
System.out.println(i + j);

int i = 4;
System.out.println(i * 6);
method1();

}
}

scope of
method1's
version of iscope of j

scope of
main's

version of i

Local Variables vs. Global Variables

public class MyProgram {
static int x = 10; // a global variable

public static void method1() {
int y = 5; // a local variable
System.out.println(x + y);
...

• Variables that are declared inside a method are local variables.

• they cannot be used outside that method.

• In theory, we can define global variables that are available
throughout the program.

• they are declared outside of any method,
using the keyword static

• However, we generally avoid global variables.

• can lead to problems in which one method accidentally
affects the behavior of another method

Yet Another Change-Adder Program!

• Let's change it to print the result in dollars and cents.

• 321 cents should print as 3 dollars, 21 cents

public class ChangeAdder3 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int dollars, cents;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;

// what should go here?

System.out.println("dollars = " + dollars);
System.out.println("cents = " + cents);

}
}

Conditional Execution: Deciding What to Do

• What if the user has 121 cents?

• will print as 1 dollars, 21 cents

• would like it to print as 1 dollar, 21 cents

• We need a means of deciding what to print at runtime.

• known as conditional execution

• the flow of control depends on a condition or test.

• Here's an example of how it would work:

System.out.print(dollars);
if (dollars == 1) {

System.out.print(" dollar, ");
} else {

System.out.print(" dollars, ");
}
// code for printing cents goes here

Simple Conditional Execution in Java

if (condition) {

true block
} else {

false block
}

• If the condition is true:

• the statement(s) in the true block are executed

• the statement(s) in the false block (if any) are skipped

• If the condition is false:

• the statement(s) in the false block (if any) are executed

• the statement(s) in the true block are skipped

if (condition) {

true block
}

Expressing Simple Conditions

• Java provides a set of operators called relational operators
for expressing simple conditions:

operator name examples

< less than 5 < 10
num < 0

> greater than 40 > 60 (which is false!)
count > 10

<= less than or equal to average <= 85.8

>= greater than or equal to temp >= 32

== equal to sum == 10

firstChar == 'P'

!= not equal to age != myAge

(don't confuse with =)

Change Adder With Conditional Execution
public class ChangeAdder3 {

public static void main(String[] args) {
...

System.out.print(dollars);
if (dollars == 1) {

System.out.print(" dollar, ");
} else {

System.out.print(" dollars, ");
}

// Add statements to correctly print cents.
// Try to use only an if, not an else.

}
}

Classifying Bugs
• Syntax errors

• found by the compiler

• occur when code doesn't follow the rules of the
programming language

• examples?

Classifying Bugs
• Syntax errors

• found by the compiler

• occur when code doesn't follow the rules of the
programming language

• examples?

• Logic errors

• the code compiles, but it doesn’t do what you intended
it to do

• may or may not cause the program to crash

• called runtime errors if the program crashes

• often harder to find!

Common Syntax Errors Involving Variables

• Failing to declare the type of the variable.

• Failing to initialize a variable before you use it:
int radius;

double area = 3.1416 * radius * radius;

• Trying to declare a variable when there is already a variable
with that same name in the current scope:

int val1 = 10;
System.out.print(val1 * 2);
int val1 = 20;

Will This Compile?

public class ChangeAdder {
public static void main(String[] args) {

...
int cents;
cents = 25*quarters + 10*dimes + 5*nickels + pennies;

if (cents % 100 == 0) {
int dollars = cents / 100;
System.out.println(dollars + " dollars");

} else {
int dollars = cents / 100;
cents = dollars % 100;
System.out.println(dollars + " dollars and "

+ cents + " cents");
}

}
}

Representing Integers

• Like all values in a computer, integers are stored as
binary numbers – sequences of bits (0s and 1s).

• With n bits, we can represent 2n different values.

• examples:

• 2 bits give 22 = 4 different values

00, 01, 10, 11

• 3 bits give 23 = 8 different values

000, 001, 010, 011, 100, 101, 110, 111

• When we allow for negative integers (which Java does)
n bits can represent any integer from –2n-1 to 2n-1 – 1.

• there's one fewer positive value to make room for 0

Java’s Integer Types

• Java’s actually has four primitive types for integers, all of which
represent signed integers.

type # of bits range of values

byte 8 –27 to 27 – 1
(–128 to 127)

short 16 –215 to 215 – 1
(–32768 to 32767)

int 32 –231 to 231 – 1
(approx. +/–2 billion)

long 64 –263 to 263 – 1g

• We typically use int, unless there’s a good reason not to.

Java’s Floating-Point Types

• Java has two primitive types for floating-point numbers:

type # of bits approx. range approx. precision

float 32 +/–10–45 to +/–1038 7 decimal digits

double 64 +/–10–324 to +/–10308 15 decimal digits

• We typically use double because of its greater precision.

• Number the bits from right to left

• example:

• For each bit that is 1, add 2n, where n = the bit number

• example:

decimal value = 26 + 24 + 23 + 22 + 20

64 + 16 + 8 + 4 + 1 = 93

• another example: what is the integer represented by
01001011?

10111010
b0b1b2b3b4b5b6b7

10111010
b0b1b2b3b4b5b6b7

Binary to Decimal

Decimal to Binary

• Go in the reverse direction: determine which powers of 2
need to be added together to produce the decimal number.

• example: 42 = 32 + 8 + 2
= 25 + 23 + 21

• thus, bits 5, 3, and 1 are all 1s: 42 = 00101010

• Start with the largest power of 2 less than or equal to the
number, and work down from there.

• example: what is 21 in binary?

16 is the largest power of 2 <= 21: 21 = 16 + 5

now, break the 5 into powers of 2: 21 = 16 + 4 + 1

1 is a power of 2 (20), so we’re done: 21 = 16 + 4 + 1

= 24 + 22 + 20

= 00010101

Decimal to Binary (cont.)

• Another example: what is 90 in binary?

printf: Formatted Output
• When printing a decimal number, you may want to limit yourself

to a certain number of places after the decimal.

• You can do so using the System.out.printf method.

• example:

System.out.printf("%.2f", 1.0/3);

will print

0.33

• the number after the decimal point in the first parameter
indicates how many places after the decimal should be used

• There are other types of formatting that can also be performed
using this method.

• docs.oracle.com/javase/tutorial/java/data/numberformat.html

Review
• Consider the following code fragments

1) 1000

2) 10 * 5

3) System.out.println("Hello");

4) hello

5) num1 = 5;

6) 2*width + 2*length

7) main

• Which of them are examples of:

• literals?

• identifiers?

• expressions?

• statements?

