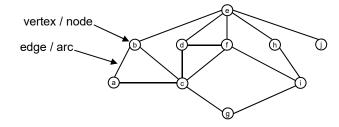
Unit 10

Graphs

Computer Science S-111
Harvard University

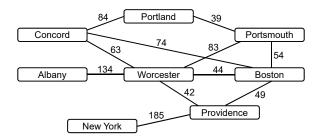
David G. Sullivan, Ph.D.

What is a Graph?



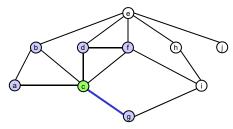
- A graph consists of:
 - a set of vertices (also known as nodes)
 - a set of *edges* (also known as *arcs*), each of which connects a pair of vertices

Example: A Highway Graph



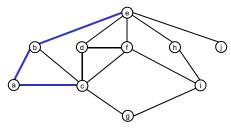
- · Vertices represent cities.
- Edges represent highways.
- This is a weighted graph, with a cost associated with each edge.
 - in this example, the costs denote mileage
- We'll use graph algorithms to answer questions like
 "What is the shortest route from Portland to Providence?"

Relationships Among Vertices

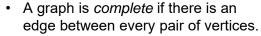


- Two vertices are adjacent if they are connected by a single edge.
 - ex: c and g are adjacent, but c and i are not
- The collection of vertices that are adjacent to a vertex v are referred to as v's *neighbors*.
 - ex: c's neighbors are a, b, d, f, and g

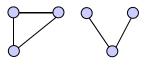
Paths in a Graph

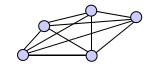


- A path is a sequence of edges that connects two vertices.
- A graph is connected if there is a path between any two vertices.
 - ex: the six vertices at right are part of a graph that is not connected



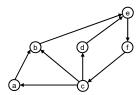
• ex: the graph at right is complete





Directed Graphs

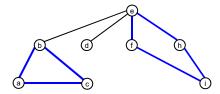
• A *directed* graph has a direction associated with each edge, which is depicted using an arrow:



- Edges in a directed graph are often represented as ordered pairs of the form (start vertex, end vertex).
 - ex: (a, b) is an edge in the graph above, but (b, a) is not.
- In a path in a directed graph, the end vertex of edge i must be the same as the start vertex of edge i + 1.
 - ex: { (a, b), (b, e), (e, f) } is a valid path. { (a, b), (c, b), (c, a) } is not.

Cycles in a Graph

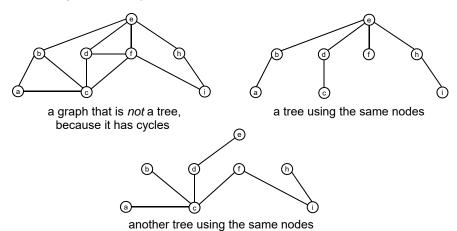
- · A cycle is a path that:
 - · leaves a given vertex using one edge
 - · returns to that same vertex using a different edge
- · Examples: the highlighted paths below



• An acyclic graph has no cycles.

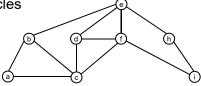
Trees vs. Graphs

- · A tree is a special type of graph.
 - · connected, undirected, and acyclic
 - we usually single out one of the vertices to be the root, but graph theory does *not* require this

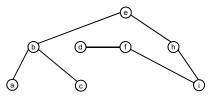


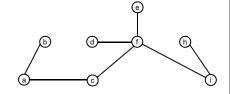
Spanning Trees

- A spanning tree is a subset of a connected graph that contains:
 - · all of the vertices
 - · a subset of the edges that form a tree
- Recall this graph with cycles from the previous slide:



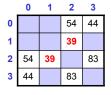
• The trees on that slide were spanning trees for this graph. Here are two others:

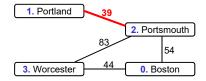




Representing a Graph: Option 1

- Use an adjacency matrix a two-dimensional array in which element [r][c] = the cost of going from vertex r to vertex c
- · Example:

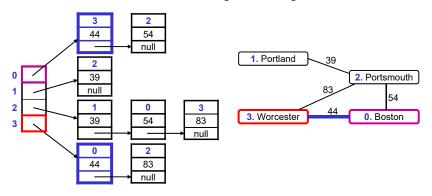




- Use a special value to indicate there's no edge from r to c
 - · shown as a shaded cell above
 - can't use 0, because an edge may have an actual cost of 0
- This representation:
 - wastes memory if a graph is *sparse* (few edges per vertex)
 - is memory-efficient if a graph is *dense* (many edges per vertex)

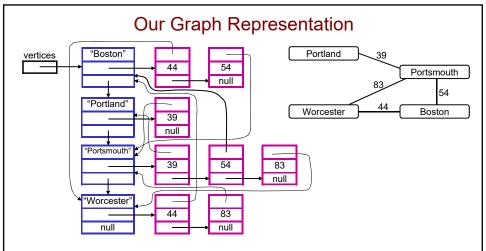
Representing a Graph: Option 2

- Use one adjacency list for each vertex.
 - · a linked list with info on the edges coming from that vertex



- This representation uses less memory if a graph is sparse.
- · It uses more memory if a graph is dense.
 - · because of the references linking the nodes

Graph Class public class Graph { private class Vertex { private String id; // adjacency list private Edge edges; private Vertex next; private boolean encountered; private boolean done; private Vertex parent; private double cost; private class Edge { private Vertex start; private Vertex end; private double cost; private Edge next; The highlighted fields are shown in the diagram private Vertex vertices; on the previous page. }



- Each Vertex object (shown in blue) stores info. about a vertex.
 - including an adjacency list of Edge objects (the purple ones)
- A Graph object has a single field called vertices
 - a reference to a linked list of Vertex objects
 - · a linked list of linked lists!

Traversing a Graph

- Traversing a graph involves starting at some vertex and visiting all vertices that can be reached from that vertex.
 - visiting a vertex = processing its data in some way
 - · if the graph is connected, all of its vertices will be visited
- We will consider two types of traversals:
 - depth-first: proceed as far as possible along a given path before backing up
 - breadth-first: visit a vertex

visit all of its neighbors

visit all unvisited vertices 2 edges away visit all unvisited vertices 3 edges away, etc.

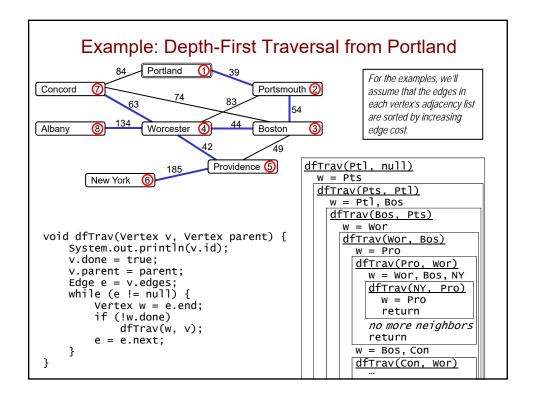
- Applications:
 - determining the vertices that can be reached from some vertex
 - web crawler (vertices = pages, edges = links)

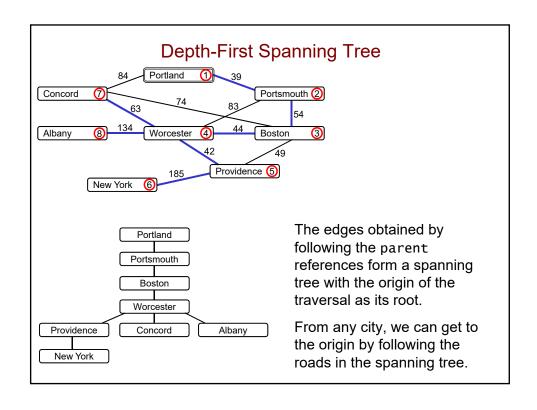
Depth-First Traversal

 Visit a vertex, then make recursive calls on all of its yet-to-be-visited neighbors:

```
dfTrav(v, parent)
visit v and mark it as visited
v.parent = parent
for each vertex w in v's neighbors
if (w has not been visited)
dfTrav(w, v)
```

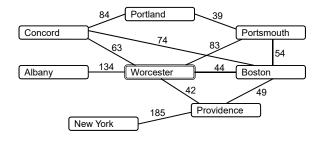
Java method:



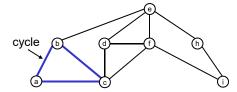


Another Example: Depth-First Traversal from Worcester

- · In what order will the cities be visited?
- · Which edges will be in the resulting spanning tree?



Checking for Cycles in an Undirected Graph

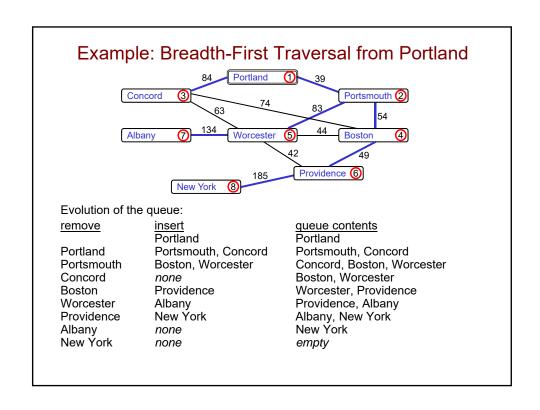


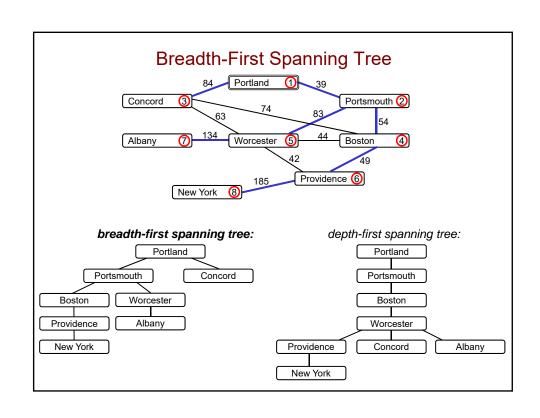
- To discover a cycle in an undirected graph, we can:
 - · perform a depth-first traversal, marking the vertices as visited
 - when considering neighbors of a visited vertex, if we discover one already marked as visited, there must be a cycle
- · If no cycles found during the traversal, the graph is acyclic.
- · This doesn't work for directed graphs:
 - · c is a neighbor of both a and b
 - · there is no cycle

Breadth-First Traversal

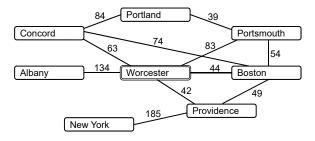
Use a queue to store vertices we've seen but not yet visited:

```
private static void bfTrav(Vertex origin) {
    origin.encountered = true;
    origin.parent = null;
    Queue<Vertex> q = new LLQueue<Vertex>();
    q.insert(origin);
    while (!q.isEmpty()) {
        Vertex v = q.remove();
        System.out.println(v.id);
                                           // Visit v.
        // Add v's unencountered neighbors to the queue.
        Edge e = v.edges;
        while (e != null) {
            Vertex w = e.end;
            if (!w.encountered) {
                w.encountered = true;
                w.parent = v;
                q.insert(w);
            e = e.next;
        }
    }
}
```





Another Example: Breadth-First Traversal from Worcester



Evolution of the queue:

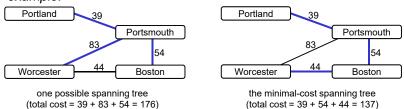
remove insert queue contents

Time Complexity of Graph Traversals

- let V = number of vertices in the graph
 E = number of edges
- If we use an adjacency matrix, a traversal requires $O(V^2)$ steps.
 - · why?
- If we use adjacency lists, a traversal requires O(V + E) steps.
 - · visit each vertex once
 - · traverse each vertex's adjacency list at most once
 - the total length of the adjacency lists is at most 2E = O(E)
 - for a sparse graph, O(V + E) is better than $O(V^2)$
 - for a dense graph, $E = O(V^2)$, so both representations are $O(V^2)$
- In the remaining notes, we'll assume an adjacency-list implementation.

Minimum Spanning Tree

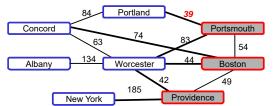
- A minimum spanning tree (MST) has the smallest total cost among all possible spanning trees.
 - · example:



- If all edges have unique costs, there is only one MST.
 If some edges have the same cost, there may be more than one.
- Example applications:
 - · determining the shortest highway system for a set of cities
 - calculating the smallest length of cable needed to connect a network of computers

Building a Minimum Spanning Tree

 Claim: If you divide the vertices into two disjoint subsets A and B, the lowest-cost edge (v_a, v_b) joining a vertex in A to a vertex in B must be part of the MST.



example:

subset A = unshaded subset B = shaded

The 6 bold edges each join a vertex in A to a vertex in B.

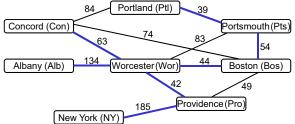
The one with the lowest cost (Portland to Portsmouth) must be in the MST.

Proof by contradiction:

- 1. Assume we can create an MST (call it T) that doesn't include (v_a, v_b).
- T must include a path from v_a to v_b, so it must include one of the other edges (v_a', v_b') that span A and B, such that (v_a', v_b') is part of the path from v_a to v_b.
- 3. Adding (v_a, v_b) to T introduces a cycle.
- Removing (v_a', v_b') gives a spanning tree with a lower total cost, which contradicts the original assumption.

Prim's MST Algorithm

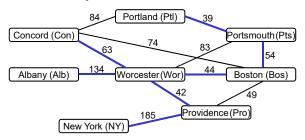
- Begin with the following subsets:
 - A = any one of the vertices
 - B = all of the other vertices
- · Repeatedly do the following:
 - select the lowest-cost edge (v_a, v_b) connecting a vertex in A to a vertex in B
 - add (v_a, v_b) to the spanning tree
 - move vertex v_b from set B to set A
- Continue until set A contains all of the vertices.



• Tracing the algorithm:

edge added	set A	set B
-	{Con}	{Alb, Bos, NY, Ptl, Pts, Pro, Wor}
(Con, Wor)	{Con, Wor}	{Alb, Bos, NY, Ptl, Pts, Pro}
(Wor, Pro)	{Con, Wor, Pro}	{Alb, Bos, NY, Ptl, Pts}
(Wor, Bos)	{Con, Wor, Pro, Bos}	{Alb, NY, Ptl, Pts}
(Bos, Pts)	{Con, Wor, Pro, Bos, Pts}	{Alb, NY, Ptl}
(Pts, Ptl)	{Con, Wor, Pro, Bos, Pts, Ptl}	{Alb, NY}
(Wor, Alb)	{Con, Wor, Pro, Bos, Pts, Ptl, Alb}	{NY}
(Pro, NY)	{Con, Wor, Pro, Bos, Pts, Ptl, Alb, NY}	8
		<u> </u>

MST May Not Give Shortest Paths



- The MST is the spanning tree with the minimal total edge cost.
- It does <u>not</u> necessarily include the minimal cost path between a pair of vertices.
- Example: shortest path from Boston to Providence is along the single edge connecting them
 - · that edge is not in the MST

Implementing Prim's Algorithm

- · We use the done field to keep track of the sets.
 - if v.done == true, v is in set A
 - if v.done == false, v is in set B
- We repeatedly scan through the lists of vertices and edges to find the next edge to add.
 - **→** O(EV)
- We can do better!
 - · use a heap-based priority queue to store the vertices in set B
 - priority of a vertex x = -1 * cost of the lowest-cost edge connecting x to a vertex in set A
 - why multiply by -1?
 - somewhat tricky: need to update the priorities over time
 - → O(E log V)

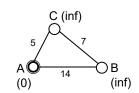
The Shortest-Path Problem

- It's often useful to know the shortest path from one vertex to another – i.e., the one with the minimal total cost
 - example application: routing traffic in the Internet
- For an unweighted graph, we can simply do the following:
 - start a breadth-first traversal from the origin, v
 - stop the traversal when you reach the other vertex, w
 - the path from v to w in the resulting (possibly partial) spanning tree is a shortest path
- A breadth-first traversal works for an unweighted graph because:
 - · the shortest path is simply one with the fewest edges
 - a breadth-first traversal visits cities in order according to the number of edges they are from the origin.
- Why might this approach fail to work for a weighted graph?

Dijkstra's Algorithm

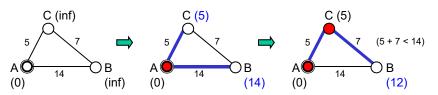
- One algorithm for solving the shortest-path problem for weighted graphs was developed by E.W. Dijkstra.
- It allows us to find the shortest path from a vertex v (the origin) to all other vertices that can be reached from v.
- Basic idea:
 - maintain estimates of the shortest paths from the origin to every vertex (along with their costs)
 - gradually refine these estimates as we traverse the graph
- · Initial estimates:

	path	cost
the origin itself:	stay put!	0
all other vertices:	unknown	infinity



Dijkstra's Algorithm (cont.)

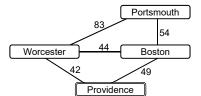
- We say that a vertex w is *finalized* if we have found the shortest path from v to w.
- · We repeatedly do the following:
 - find the unfinalized vertex w with the lowest cost estimate
 - mark w as finalized (shown as a filled circle below)
 - examine each unfinalized neighbor x of w to see if there is a shorter path to x that passes through w
 - if there is, update the shortest-path estimate for x
- Example:



Another Example: Shortest Paths from Providence

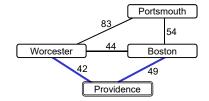
· Initial estimates:

Boston infinity
Worcester infinity
Portsmouth infinity
Providence 0



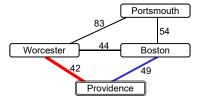
- Providence has the smallest unfinalized estimate, so we finalize it.
- · We update our estimates for its neighbors:

Boston 49 (< infinity)
Worcester 42 (< infinity)
Portsmouth infinity
Providence 0



Shortest Paths from Providence (cont.)

Boston 49
Worcester 42
Portsmouth infinity
Providence 0

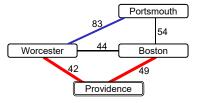


- Worcester has the smallest unfinalized estimate, so we finalize it.
 - any other route from Prov. to Worc. would need to go via Boston, and since (Prov → Worc) < (Prov → Bos), we can't do better.
- We update our estimates for Worcester's unfinalized neighbors:

Boston 49 (no change)
Worcester 42
Portsmouth 125 (42 + 83 < infinity)
Providence 0
Worcester 44
Boston
Providence

Shortest Paths from Providence (cont.)

Boston 49
Worcester 42
Portsmouth 125
Providence 0



- Boston has the smallest unfinalized estimate, so we finalize it.
 - · we'll see later why we can safely do this!
- We update our estimates for Boston's unfinalized neighbors:

Boston 49 Worcester 42

Portsmouth 103 (49 + 54 < 125)

Providence 0

Portsmouth

83

54

Worcester

44

Boston

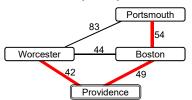
42

49

Providence

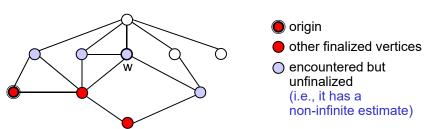
Shortest Paths from Providence (cont.)

Boston 49
Worcester 42
Portsmouth 103
Providence 0



· Only Portsmouth is left, so we finalize it.

Finalizing a Vertex



- Let w be the unfinalized vertex with the smallest cost estimate.
 Why can we finalize w, before seeing the rest of the graph?
- We know that w's current estimate is for the shortest path to w that passes through only *finalized* vertices.
- Any shorter path to w would have to pass through one of the other encountered-but-unfinalized vertices, but they are all further away from the origin than w is!
 - their cost estimates may decrease in subsequent stages, but they can't drop below w's current estimate!

Pseudocode for Dijkstra's Algorithm

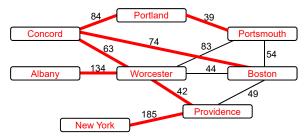
```
dijkstra(origin)
    origin.cost = 0
    for each other vertex v
        v.cost = infinity;

while there are still unfinalized vertices with cost < infinity
    find the unfinalized vertex w with the minimal cost
    mark w as finalized

for each unfinalized vertex x adjacent to w
        cost_via_w = w.cost + edge_cost(w, x)
        if (cost_via_w < x.cost)
            x.cost = cost_via_w
        x.parent = w
```

- At the conclusion of the algorithm, for each vertex v:
 - v.cost is the cost of the shortest path from the origin to v
 - if v.cost is infinity, there is no path from the origin to v
 - starting at v and following the parent references yields the shortest path

Example: Shortest Paths from Concord

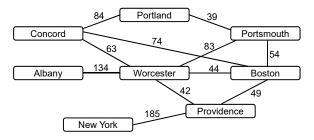


Evolution of the cost estimates (costs in bold have been finalized):

Albany	inf	inf	197	197	197	197	197	
Boston	inf	74	74					
Concord	0							
New York	inf	inf	inf	inf	inf	290	290	290
Portland	inf	84	84	84				
Portsmouth	inf	inf	146	128	123	123		
Providence	inf	inf	105	105	105			
Worcester	inf	63						

Note that the Portsmouth estimate was improved three times!

Another Example: Shortest Paths from Worcester



Evolution of the cost estimates (costs in bold have been finalized):

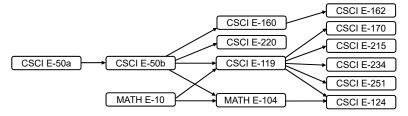
Albany				
Boston				
Concord				
New York				
Portland				
Portsmouth				
Providence				
Worcester				

Implementing Dijkstra's Algorithm

- Similar to the implementation of Prim's algorithm.
- Use a heap-based priority queue to store the unfinalized vertices.
 - priority = ?
- Need to update a vertex's priority whenever we update its shortest-path estimate.
- Time complexity = O(ElogV)

Topological Sort

- Used to order the vertices in a <u>directed acyclic graph</u> (a DAG).
- Topological order: an ordering of the vertices such that, if there is directed edge from a to b, a comes before b.
- Example application: ordering courses according to prerequisites



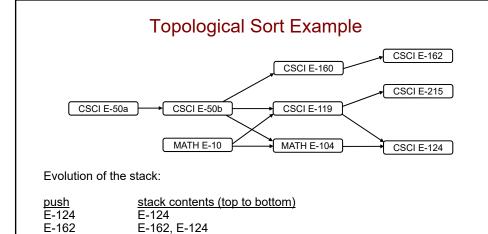
- a directed edge from a to b indicates that a is a prereq of b
- There may be more than one topological ordering.

Topological Sort Algorithm

- A successor of a vertex v in a directed graph = a vertex w such that (v, w) is an edge in the graph (v→→w)
- Basic idea: find vertices with no successors and work backward.
 - there must be at least one such vertex. why?
- Pseudocode for one possible approach:

```
topolSort
S = a stack to hold the vertices as they are visited while there are still unvisited vertices
find a vertex v with no unvisited successors mark v as visited
S.push(v)
return S
```

 Popping the vertices off the resulting stack gives one possible topological ordering.



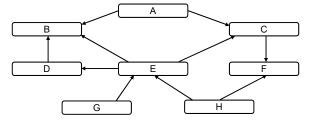
E-104, E-215, E-162, E-124 E-119, E-104, E-215, E-162, E-124 E-160, E-119, E-104, E-215, E-162, E-124

E-215, E-162, E-124

E-10, E-160, E-119, E-104, E-215, E-162, E-124 E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124 E-50a, E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124

one possible topological ordering

Another Topological Sort Example



Evolution of the stack:

E-215

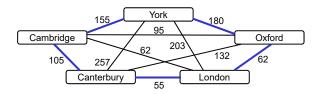
E-104 E-119 E-160

E-10 E-50b

E-50a

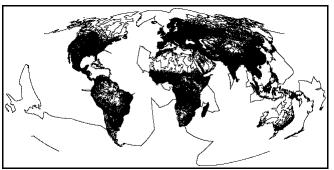
push stack contents (top to bottom)

Traveling Salesperson Problem (TSP)



- A salesperson needs to travel to a number of cities to visit clients, and wants to do so as efficiently as possible.
- A tour is a path that:
 - begins at some starting vertex
 - · passes through every other vertex once and only once
 - · returns to the starting vertex
- TSP: find the tour with the lowest total cost

TSP for Santa Claus



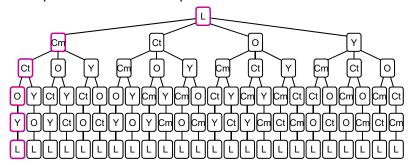
source: http://www.tsp.gatech.edu/world/pictures.html

- A "world TSP" with 1,904,711 cities.
- The figure at right shows a tour with a total cost of 7,516,353,779 meters which is at most 0.068% longer than the optimal tour.

- Other applications:
 - · coin collection from phone booths
 - · routes for school buses or garbage trucks
 - minimizing the movements of machines in automated manufacturing processes
 - many others

Solving a TSP: Brute-Force Approach

- Perform an exhaustive search of all possible tours.
 - · represent the set of all possible tours as a tree



- · The leaf nodes correspond to possible solutions.
 - for n cities, there are (n-1)! leaf nodes in the tree.
 - half are redundant (e.g., L-Cm-Ct-O-Y-L = L-Y-O-Ct-Cm-L)
- Problem: exhaustive search is intractable for all but small n.
 - example: when n = 14, ((n 1)!) / 2 = over 3 billion

Solving a TSP: Informed Search

- Focus on the most promising paths through the tree of possible tours.
 - · use a function that estimates how good a given path is
- · Better than brute force, but still exponential space and time.

Algorithm Analysis Revisited

• Recall that we can group algorithms into classes (n = problem size):

<u>name</u>	example expressions	big-O notation
constant time	1,7,10	0(1)
logarithmic time	3log ₁₀ n, log ₂ n + 5	O(log n)
linear time	5n, 10n – 2log ₂ n	O(n)
n log n time	$4n \log_2 n$, $n \log_2 n + n$	O(n log n)
quadratic time	$2n^2 + 3n, n^2 - 1$	$O(n^2)$
n ^c (c > 2)	$n^3 - 5n, 2n^5 + 5n^2$	$O(n^c)$
exponential time	2 ⁿ , 5e ⁿ + 2n ²	O(c ⁿ)
factorial time	(n-1)!/2, 3n!	O(n!)

- Algorithms that fall into one of the classes above the dotted line are referred to as *polynomial-time* algorithms.
- The term *exponential-time algorithm* is sometimes used to include *all* algorithms that fall below the dotted line.
 - algorithms whose running time grows as fast or faster than cⁿ

Classifying Problems

- Problems that can be solved using a polynomial-time algorithm are considered "easy" problems.
 - we can solve large problem instances in a reasonable amount of time
- Problems that don't have a polynomial-time solution algorithm are considered "hard" or "intractable" problems.
 - they can only be solved exactly for small values of n
- Increasing the CPU speed doesn't help much for intractable problems:

		CPU 2
	<u>CPU 1</u>	(1000x faster)
(n) alg:	Ν	1000N
(n²) alg:	Ν	31.6 N
)(2 ⁿ) alg:	N	N + 9.97
)((n²) alg:	(n) alg: N (n²) alg: N

Dealing With Intractable Problems

- When faced with an intractable problem, we resort to techniques that quickly find solutions that are "good enough".
- Such techniques are often referred to as *heuristic* techniques.
 - heuristic = rule of thumb
 - there's no guarantee these techniques will produce the optimal solution, but they typically work well

Take-Home Lessons

- Computer science is the science of solving problems using computers.
- · Java is one programming language we can use for this.
- · The key concepts transcend Java:
 - · flow of control
 - · variables, data types, and expressions
 - · conditional execution
 - procedural decomposition
 - · definite and indefinite loops
 - recursion
 - · console and file I/O
 - memory management (stack, heap, references)

Take-Home Lessons (cont.)

- Object-oriented programming allows us to capture the abstractions in the programs that we write.
 - · creates reusable building blocks
 - key concepts: encapsulation, inheritance, polymorphism
- Abstract data types allow us to organize and manipulate collections of data.
 - · a given ADT can be implemented in different ways
 - fundamental building blocks: arrays, linked nodes
- Efficiency matters when dealing with large collections of data.
 - some solutions can be *much* faster or more space efficient
 - what's the best data structure/algorithm for your workload?
 - example: sorting an almost sorted collection

Take-Home Lessons (cont.)

- · Use the tools in your toolbox!
 - · interfaces, generic data structures
 - lists/stacks/queues, trees, heaps, hash tables
 - · recursion, recursive backtracking, divide-and-conquer
- Use built-in/provided collections/interfaces:
 - java.util.ArrayList<T> (implements List<T>)
 - java.util.LinkedList<T> (implements List<T> and Queue<T>)
 - java.util.Stack<T>
 - java.util.TreeMap<K, V> (a balanced search tree)
 java.util.HashMap<K, V> (a hash table)
 - java.util.PriorityQueue<T> (a heap)
- But use them intelligently!
 - ex: LinkedList maintains a reference to the last node in the list
 - list.add(item, n) will add item to the end in O(n) time
 - list.addLast(item) will add item to the end in O(1) time!