
Procedural Decomposition

(How to Use Methods to Write Better Programs)

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 1, Part 3

Example Program: Writing Block Letters
• Here's a program that writes the name "DEE" in block letters:

public class BlockLetters {
public static void main(String[] args) {

System.out.println("    -----");
System.out.println("     |   \\");
System.out.println("     |    |");
System.out.println("     |   /");
System.out.println("    -----");
System.out.println();
System.out.println("    +-----");
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");
System.out.println();
System.out.println("    +-----");
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");

}
}



Example Program: Writing Block Letters
• The output looks like this:

-----
|   \
|    |
|   /

-----

+-----
|
+----
|
+-----

+-----
|
+----
|
+-----

Code Duplication
public class BlockLetters {

public static void main(String[] args) {
System.out.println("    -----");
System.out.println("     |   \\");
System.out.println("     |    |");
System.out.println("     |   /");
System.out.println("    -----");
System.out.println();
System.out.println("    +-----");
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");
System.out.println();
System.out.println("    +-----");
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");

}
}

• The code that writes an E appears twice – it is duplicated.



Code Duplication (cont.)

• Code duplication is undesirable.  Why?

• Also, what if we wanted to create another word containing the 
letters D or E?  What would we need to do?

• A better approach: create a command for writing each letter, 
and execute that command as needed.

• To create our own command in Java, we define a method.

Defining a Simple Static Method
• We've already seen how to define a main method:

public static void main(String[] args) {

statement;
statement;
…

statement;
}

• The simple methods that we'll define have a similar syntax:

public static void name() {

statement;
statement;
…

statement;
}

• This type of method is known as static method.  



Defining a Simple Static Method (cont.)

• Here's a static method for writing a block letter E:

public static void writeE() {
System.out.println("    +-----");
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");

}

• It contains the same statements that we used to write an E 
in our earlier program.

• This method gives us a command for writing an E.

• To use it, we simply include the following statement:

writeE();

Calling a Method
• The statement

writeE();

is known as a method call.  

• General syntax for a static method call:

methodName();

• Calling a method causes the statements inside the method
to be executed.



Using Methods to Eliminate Duplication
• Here's a revised version of our program:

public class BlockLetters2 {
public static void writeE() { 

System.out.println("    +-----");
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");

}

public static void main(String[] args) {
System.out.println("    -----");
System.out.println("     |   \\");
System.out.println("     |    |");
System.out.println("     |   /");
System.out.println("    -----");
System.out.println();
writeE();
System.out.println();
writeE();

}
}

Methods Can Be Defined In Any Order
• Here's a version in which we put the main method first:

public class BlockLetters2 {
public static void main(String[] args) {

System.out.println("    -----");
System.out.println("     |   \\");
System.out.println("     |    |");
System.out.println("     |   /");
System.out.println("    -----");
System.out.println();
writeE();
System.out.println();
writeE();

}

public static void writeE() { 
System.out.println("    +-----");
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");

}
}

• By convention, the main method should appear first or last.



Flow of Control

• A program's flow of control is the order in which its statements 
are executed. 

• By default, the flow of control: 

• is sequential

• begins with the first statement in the main method

Flow of Control (cont.)

• Example: consider the following program:
public class HelloWorldAgain {

public static void main(String[] args) {
System.out.println("hello");
System.out.println("world");
System.out.println();
...

}
}

• We can represent the flow of control using a flow chart:

System.out.println("hello");

System.out.println("world");

System.out.println();



Method Calls and Flow of Control

• When we call a method, the flow of control jumps to the method.

• After the method completes, the flow of control jumps back
to the point where the method call was made.

public class BlockLetters2 {
public static void writeE() { 

System.out.println("    +-----"); 
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");

}

public static void main(String[] args) {
System.out.println("    -----");  
System.out.println("     |   \\");
System.out.println("     |    |");
System.out.println("     |   /");
System.out.println("    -----");
System.out.println();
writeE();
System.out.println();
...

Method Calls and Flow of Control (cont.)

• Here's a portion of the flowchart for our program:

main method: writeE method:

System.out.println();

writeE();

System.out.println("   +-----");

System.out.println("   |");

System.out.println("   +-----");

.

.

.

System.out.println();

.

.

.

.

.

.



Another Use of a Static Method
public class BlockLetters3 {

public static void writeD() { 
System.out.println("    -----");
System.out.println("     |   \\");
System.out.println("     |    |");
System.out.println("     |   /");
System.out.println("    -----");

}

public static void writeE() { 
System.out.println("    +-----");
System.out.println("    |");
System.out.println("    +----");
System.out.println("    |");
System.out.println("    +-----");

}

public static void main(String[] args) {
writeD();
System.out.println();
writeE();
System.out.println();
writeE();

}
}

Another Use of a Static Method (cont.)

• The code in the writeD method is only used once, 
so it doesn't eliminate code duplication.

• However, using a separate static method still makes the 
overall program more readable.

• It helps to reveal the structure of the program.



Procedural Decomposition

• In general, methods allow us to decompose a problem into 
smaller subproblems that are easier to solve.

• the resulting code is also easier to understand and maintain

• In our program, we've decomposed the task "write DEE" 
into two subtasks: 

• write D

• write E (which we perform twice).

• We can use a structure diagram to show the decomposition:

write DEE

write D write E

Procedural Decomposition (cont.)

• How could we use procedural decomposition in printing 
the following lyrics?

Dashing through the snow in a one-horse open sleigh,
O'er the fields we go, laughing all the way.
Bells on bobtail ring, making spirits bright.
What fun it is to ride and sing a sleighing song tonight!

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!

A day or two ago, I thought I'd take a ride,
And soon Miss Fanny Bright was seated by my side.
The horse was lean and lank; misfortune seemed his lot;
We got into a drifted bank and then we got upsot.

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!



Procedural Decomposition (cont.)

Dashing through the snow in a one-horse open sleigh,
O'er the fields we go, laughing all the way.
Bells on bobtail ring, making spirits bright.
What fun it is to ride and sing a sleighing song tonight!

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!

A day or two ago, I thought I'd take a ride,
And soon Miss Fanny Bright was seated by my side.
The horse was lean and lank; misfortune seemed his lot;
We got into a drifted bank and then we got upsot.

printSong

printVerse1

printVerse2

printVerse1 printRefrain printVerse2

printHalfRefrain

printRefrain

printHalfRefrain

Code Reuse

• Once we have a set of methods, we can use them to solve 
other problems.

• Here's a program that writes the name "ED":
public class BlockLetters4 {

// these methods are the same as before
public static void writeD() { 

...
}

public static void writeE() { 
...

}

public static void main(String[] args) {
writeE();
System.out.println();
writeD();

}
}



Tracing the Flow of Control

• What is the output of the following program?

public class FlowControlTest {
public static void methodA() {

System.out.println("starting method A");
}

public static void methodB() {
System.out.println("starting method B");

}

public static void methodC() {
System.out.println("starting method C");

}

public static void main(String[] args) {
methodC();
methodA();

}
}

Methods Calling Methods

• The definition of one method can include calls to other methods.

• We've seen this already in the main method:

public static void main(String[] args) {
writeE();
System.out.println();
writeD();

}

• We can also do this in other methods:

public static void foo() {
System.out.println("This is method foo.");
bar();

}

public static void bar() {
System.out.println("This is method bar.");

}



Methods Calling Methods (cont.)

• What is the output of the following program?

public class FlowControlTest2 {
public static void methodOne() {

System.out.println("boo");
methodThree();

}

public static void methodTwo() {
System.out.println("hoo");
methodOne();

}

public static void methodThree() {
System.out.println("foo");

}

public static void main(String[] args) {
methodOne();
methodThree();
methodTwo();

}
}

Comments

• Comments are text that is ignored by the compiler.

• Used to make programs more readable

• Two types: 

1. line comments: begin with //

• compiler ignores from // to the end of the line

• examples:
// this is a comment

System.out.println();  // so is this

2. block comments: begin with /* and end with */

• compiler ignores everything in between

• typically used at the top of each source file



Comments (cont.)

/*
* DrawTriangle.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program draws a triangle.
*/

public class DrawTriangle {
public static void main(String[] args) {

System.out.println("Here's my drawing:");

// Draw the triangle using characters.
System.out.println("    ^");
System.out.println("   / \\");
System.out.println("  /   \\");
System.out.println(" /     \\");
System.out.println(" -------");

}
}

block comments

line comments

Comments (cont.)

• Put comments:

• at the top of each file, naming the author and explaining 
what the program does

• at the start of every method other than main, 
describing its behavior

• inside methods, to explain complex pieces of code
(this will be more useful later in the course)

• We will deduct points for failing to include the correct comments 
and other stylistic problems.


