
best: O(1) to add to the end 
(no shifting needed!)
worst: O(n) to add to the start
(all n items are shifted right)

average: O(n) 
(on average, shift n/2 items)

Efficiency of the List ADT Implementations

only one case: O(1) 
(because arrays provide 
random access!)

getItem()

best: O(1) to add to the front
(no need to walk down!)
worst: O(n) to add to the end
(need to walk down the full list)

average: O(n) 
(on average, walk halfway down)

note: could make adding to 
the end O(1) by keeping an extra 
reference to the last node

addItem()

LLListArrayList

n = number of items in the list

best: O(1) to get the first item
worst: O(n) to get the last item
(need to walk down all n nodes)

average: O(n) 
(on average, walk halfway down)

best: O(1) to remove the last item 
(no shifting needed!)
worst: O(n) to remove first item
(all n items are shifted left)

average: O(n) 
(on average, shift n/2 items)

Efficiency of the List ADT Implementations (cont.)

O(n)O(m) where m is the 
anticipated maximum length

space 
efficiency

removeItem()

LLListArrayList

n = number of items in the list

best: O(1) to remove the first item 
(no need to walk down!)
worst: O(n) to remove the last item
(need to walk down the full list)

average: O(n) 
(on average, walk halfway down)

Could we make removing 
the last item O(1)?
not in a singly-linked list!
• need to modify the 
second-to-last node

• even if we add a reference 
to that node, updating it 
would take O(n) steps!


