
Computer Science S-111
Intensive Intro. to Computer Science

and Data Structures

Harvard Summer School 2025
David G. Sullivan, Ph.D.

Unit 1: Getting Started

1-1: Course Overview; Computational Problem Solving 2
1-2: Programming in Java ... 15
1-3: Procedural Decomposition Using Simple Methods 21

Unit 2: Imperative Programming I

2-1: Primitive Data, Types, and Expressions .. 34
2-2: Definite Loops ... 66

Unit 3: Imperative Programming II
3-1: Methods with Parameters and Return Values 95
3-2: Using Objects from Existing Classes ... 118
3-3: Conditional Execution .. 141
3-4: Indefinite Loops and Boolean Expressions .. 164

Unit 4: Processing Collections of Data

4-1: Arrays .. 181
4-2: File Processing .. 211
4-3: Recursion ... 223

Unit 5: Object-Oriented Programming

5-1: Classes as Blueprints: How to Define New Types of Objects 241
5-2: Inheritance and Polymorphism .. 279

Unit 6: Foundations of Data Structures

6-1: Abstract Data Types ... 306
6-2: Recursion Revisited; Recursive Backtracking 325

Unit 7: Sorting and Algorithm Analysis
7-1: Fundamentals ... 345
7-2: Divide-and-Conquer Sorting Algorithms; Distributive Sorting 365

Unit 8: Sequences

8-1: Linked Lists .. 387
8-2: Lists, Stacks, and Queues ... 421

Unit 9: Trees and Hash Tables
9-1: Binary Trees and Huffman Encoding .. 456
9-2: Search Trees .. 479
9-3: Heaps and Priority Queues .. 498
9-4: Hash Tables ... 511

Unit 10: Graphs ... 527

Intensive Introduction to
Computer Science

Course Overview
Computational Problem Solving

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 1, Part I

Welcome to CS S-111!

Computer science is not so much the science of computers
as it is the science of solving problems using computers.

Eric Roberts

• This course covers:

• the process of developing algorithms to solve problems

• the process of developing computer programs to express
those algorithms

• fundamental data structures for imposing order on a
collection of information

• the process of comparing data structures & algorithms
for a given problem

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 2

Computer Science and Programming

• There are many different fields within CS, including:

• software systems

• computer architecture

• networking

• programming languages, compilers, etc.

• theory

• AI

• Experts in many of these fields don’t do much programming!

• However, learning to program will help you to develop
ways of thinking and solving problems used in all fields of CS.

A Rigorous Introduction

• Intended for:
• future concentrators who plan to take more

advanced courses
• others who want a rigorous introduction
• no programming background required,

but can also benefit people with prior background

• Allow for 20-30 hours of work per week
• start work early!
• come for help!
• don't fall behind!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 3

S-111 Requirements

• Lectures and sections

• attendance at both is required (10% of final grade)

• Ten problem sets (25%)

• part I = "written" problems

• part II = "programming" problems

• grad-credit students will have extra work on most assts.

• Four unit tests (30%)

• given at the end of lecture (see the schedule)

• Final exam (35%)

• Friday, August 8

Textbooks

• Required: The CSCI S-111 Coursepack

• contains all of the lecture notes

• need to mark it up during lecture

• Optional resource for the first half:
Building Java Programs by Stuart Reges and Marty Stepp
(Addison Wesley).

• Optional resource for the second half:
Data Structures & Algorithms in Java, 2nd edition
by Robert Lafore (SAMS Publishing).

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 4

Other Course Staff

• Teaching Assistants (TAs):

• David Chung

• Jodi Yu

• See the course website for contact info.

• Ed Discussion is your best bet for questions.

Other Details of the Syllabus

• Schedule:

• note the due dates and test dates

• one day each week is flexible learning / review

• Policies:

• problem sets are due by 10 p.m.

• 10% penalty for submissions that are up to 24 hours late

• please don't request an extension unless it's an emergency!

• grading

• Please read the syllabus carefully and make sure that you
understand the policies and follow them carefully.

• Let us know if you have any questions.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 5

Algorithms

• In order to solve a problem using a computer,
you need to come up with one or more algorithms.

• An algorithm is a step-by-step description of how to
accomplish a task.

• An algorithm must be:

• precise: specified in a clear and unambiguous way

• effective: capable of being carried out

Programming

• Programming involves expressing an algorithm in a form that
a computer can interpret.

• We will primarily be using the Java programming language.

• one of many possible languages

• The key concepts of the course transcend this language.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 6

What Does a Program Look Like?

• Here's a Java program that displays a simple message:

public class HelloWorld {
public static void main(String[] args) {

System.out.println("hello, world");
}

}

• Like all programming languages, Java has a precise set of rules
that you must follow.

• the syntax of the language

Before We Get to Java...

• We'll start with a simpler language that allows us to
quickly pose interesting problems.

• Picobot is a language that controls a "vacuum cleaner" robot.

• Picobot is also the name of the robot!

• Goal: to have the robot "vacuum"/"cover" a small room.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 7

The Picobot Environment

Picobot

area
already
covered

area not
covered

(yet!)

walls/obstacles

The Picobot Environment (cont.)

• Rooms can have walls/obstacles "inside" the box, too!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 8

Picobot's Surroundings

• Picobot is only aware of its immediate surroundings.

• can't distinguish a covered cell
from an uncovered one

• To describe Picobot's surroundings,
use a sequence of four letters, one for each direction:

• if there is an obstacle, use the direction's letter (N, E, W, or S)

• if there is not an obstacle, use an x

• Put the letters in "NEWS" ordering.

• example:

xExS
• nothing to the N

• obstacle to the E

• nothing to the W

• obstacle to the S

How would you describe Picobot's surroundings
in the figure below?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 9

Picobot's Surroundings: Summing Up

• Always use NEWS ordering:

N E W S

• Picobot can't distinguish covered from uncovered

• all that matters is obstacle (use letter) vs. no obstacle (use x)

• What are these surroundings?

Picobot's State

• Picobot's state is a single integer (from 0-99).

• It always starts in state 0.

• The state can be used to capture the current context or subtask.

• e.g., "moving east until I get to an obstacle"

• it's up to us to decide what each state means

• Surroundings + state = all Picobot knows about the world!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 10

• A Picobot program is a collection of rules.

• allow us to tell what Picobot what to do

• Here's one rule:

if you are in state 0 then move one cell North
and and

only have obstacles stay in state 0
on your West and South

• An X for the direction means "stay put":

0 xxWS -> X 1

Picobot's Rules

state surroundings

0 xxWS 0N

direction
to move new state

->

Wildcards

• An asterisk (*) is a wildcard.

• matches either an obstacle or an empty cell.

• Here's a modified version of our earlier rule:

if you are in state 0 then move one cell North
and and

only have obstacles stay in state 0
on your West and South

(regardless of your North or East)

state surroundings

0 **WS 0N

direction
to move new state

->

NxWS xEWS NEWS
(won’t happen)

xxWS

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 11

Where will Picobot come to a stop?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->

What rule can we add to the original ones
so Picobot will continue until it stops at cell 5?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->5

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 12

Is this set of rules an acceptable alternative?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->
0 *E** N 0->

5

Dealing With a Maze

• What strategy do humans use?

• Picobot can use this approach, too!

• To know where its right side is,
you need four states:

• facing north (right side is to the east)

• facing south (right side is to the west)

• facing east (right side is to the south)

• facing west (right side is to the north)

• It doesn't matter what number you assign to which state,
as long as one of them is state 0.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 13

Dealing With a Maze (cont.)

• Let state 0 be facing North.

• Here's one rule for that state:

If you're facing North with the wall on your right
and nothing in front of you, go forward.
0 xE** -> N 0

• Let's write a rule for the following:

If you're facing North but you lose the wall on
your right, get over to the wall now!

• For the homework, you'll also need:

• one or two rules for hitting a dead end
when facing North

• similar sets of rules for the other three
facing directions

Step-by-step: Where will Picobot come to a stop?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->

The rules are applied
as follows:
• first rule
• first rule
• first rule
• second rule
• second rule
• second rule
• third rule (enters state 1)
No rules for state 1,
so we're done.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 14

Programming in Java

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 1, Part 2

Programs and Classes

• In Java, all programs consist of one of more classes.

• For now:

• we'll limit ourselves to writing a single class

• you can just think of a class as a container for your program

• Example: our earlier program:

public class HelloWorld {
public static void main(String[] args) {

System.out.println("hello, world");
}

}

• A class must be defined in a file with a name of the form
classname.java

• for the class above, the name would be HelloWorld.java

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 15

Format of a Java Class

• General syntax:

public class name {

}

where name is replaced by the name of the class.

• Notes:

• the class begins with a header:

public class name

• the code inside the class is enclosed in curly braces
({ and })

code goes here…

Methods

• A method is a collection of instructions that perform
some action or computation.

• Every Java program must include a method called main.

• contains the instructions that will be executed first
when the program is run

• Our example program includes a main method with a
single instruction:

public class HelloWorld {
public static void main(String[] args) {

System.out.println("hello, world");
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 16

Methods (cont.)

• General syntax for the main method:

public static void main(String[] args) {

statement;
statement;
…

statement;
}

where each statement is replaced by a single instruction.

• Notes:

• the main method always begins with the same header:
public static void main(String[] args)

• the code inside the method is enclosed in curly braces

• each statement typically ends with a semi-colon

• the statements are executed sequentially

Identifiers

• Used to name the components of a Java program like
classes and methods.

• Rules:

• must begin with a letter (a-z, A-Z), $, or _

• can be followed by any number of letters, numbers, $, or _

• spaces are not allowed

• cannot be the same as a keyword – a word like class
that is part of the language itself (see the Resources page)

• Which of these are not valid identifiers?
n1 num_values 2n

avgSalary course name

• Java is case-sensitive (for both identifiers and keywords).

• example: HelloWorld is not the same as helloWorld

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 17

Conventions for Identifiers

• Capitalize class names.

• example: HelloWorld

• Do not capitalize method names.

• example: main

• Capitalize internal words within the name.

• example: HelloWorld

Printing Text
public class HelloWorld {

public static void main(String[] args) {
System.out.println("hello, world");

}
}

• Our program contains a single statement that prints some text.

• The printed text appears in the terminal or console.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 18

Printing Text (cont.)

• The general format of such statements is:

System.out.println("text");

where text is replaced by the text you want to print.

• A piece of text like "Hello, world" is referred to as
a string literal.

• string: a collection of characters

• literal: specified explicitly in the program ("hard-coded")

• A string literal must be enclosed in double quotes.

• You can print a blank line by omitting the string literal:

System.out.println();

Printing Text (cont.)

• A string literal cannot span multiple lines.

• example: this is not allowed:

System.out.println("I want to print a string
on two lines.");

• Instead, we can use two different statements:
System.out.println("I want to print a string");
System.out.println("on two lines.");

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 19

println vs. print

• After printing a value, System.out.println
"moves down" to the next line on the screen.

• If we don’t want to do this, we can use System.out.print
instead:

System.out.print("text");

The next text to be printed will begin just after this text –
on the same line.

• For example:

System.out.print("I ");
System.out.print("program ");
System.out.println("with class!");

is equivalent to

System.out.println("I program with class!");

Escape Sequences

• Problem: what if we want to print a string that includes
double quotes?

• example: System.out.println("Jim said, "hi!"");

• this won’t compile. why?

• Solution: precede the double quote character by a \
System.out.println("Jim said, \"hi!\"");

• \" is an example of an escape sequence.

• The \ tells the compiler to interpret the following character
differently than it ordinarily would.

• Other examples:
• \n a newline character (goes to the next line)
• \t a tab
• \\ a backslash

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 20

Procedural Decomposition

(How to Use Methods to Write Better Programs)

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 1, Part 3

Example Program: Writing Block Letters
• Here's a program that writes the name "DEE" in block letters:

public class BlockLetters {
public static void main(String[] args) {

System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");
System.out.println();
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 21

Example Program: Writing Block Letters
• The output looks like this:

| \
| |
| /

+-----
|
+----
|
+-----

+-----
|
+----
|
+-----

Code Duplication
public class BlockLetters {

public static void main(String[] args) {
System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");
System.out.println();
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}
}

• The code that writes an E appears twice – it is duplicated.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 22

Code Duplication (cont.)

• Code duplication is undesirable. Why?

• Also, what if we wanted to create another word containing the
letters D or E? What would we need to do?

• A better approach: create a command for writing each letter,
and execute that command as needed.

• To create our own command in Java, we define a method.

Defining a Simple Static Method
• We've already seen how to define a main method:

public static void main(String[] args) {

statement;
statement;
…

statement;
}

• The simple methods that we'll define have a similar syntax:

public static void name() {

statement;
statement;
…

statement;
}

• This type of method is known as static method.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 23

Defining a Simple Static Method (cont.)

• Here's a static method for writing a block letter E:

public static void writeE() {
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}

• It contains the same statements that we used to write an E
in our earlier program.

• This method gives us a command for writing an E.

• To use it, we simply include the following statement:

writeE();

Calling a Method
• The statement

writeE();

is known as a method call.

• General syntax for a static method call:

methodName();

• Calling a method causes the statements inside the method
to be executed.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 24

Using Methods to Eliminate Duplication
• Here's a revised version of our program:

public class BlockLetters2 {
public static void writeE() {

System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}

public static void main(String[] args) {
System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
writeE();
System.out.println();
writeE();

}
}

Methods Can Be Defined In Any Order
• Here's a version in which we put the main method first:

public class BlockLetters2 {
public static void main(String[] args) {

System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
writeE();
System.out.println();
writeE();

}

public static void writeE() {
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}
}

• By convention, the main method should appear first or last.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 25

Flow of Control

• A program's flow of control is the order in which its statements
are executed.

• By default, the flow of control:

• is sequential

• begins with the first statement in the main method

Flow of Control (cont.)

• Example: consider the following program:
public class HelloWorldAgain {

public static void main(String[] args) {
System.out.println("hello");
System.out.println("world");
System.out.println();
...

}
}

• We can represent the flow of control using a flow chart:

System.out.println("hello");

System.out.println("world");

System.out.println();

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 26

Method Calls and Flow of Control

• When we call a method, the flow of control jumps to the method.

• After the method completes, the flow of control jumps back
to the point where the method call was made.

public class BlockLetters2 {
public static void writeE() {

System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}

public static void main(String[] args) {
System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");
System.out.println();
writeE();
System.out.println();
...

Method Calls and Flow of Control (cont.)

• Here's a portion of the flowchart for our program:

main method: writeE method:

System.out.println();

writeE();

System.out.println(" +-----");

System.out.println(" |");

System.out.println(" +-----");

.

.

.

System.out.println();

.

.

.

.

.

.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 27

Another Use of a Static Method
public class BlockLetters3 {

public static void writeD() {
System.out.println(" -----");
System.out.println(" | \\");
System.out.println(" | |");
System.out.println(" | /");
System.out.println(" -----");

}

public static void writeE() {
System.out.println(" +-----");
System.out.println(" |");
System.out.println(" +----");
System.out.println(" |");
System.out.println(" +-----");

}

public static void main(String[] args) {
writeD();
System.out.println();
writeE();
System.out.println();
writeE();

}
}

Another Use of a Static Method (cont.)

• The code in the writeD method is only used once,
so it doesn't eliminate code duplication.

• However, using a separate static method still makes the
overall program more readable.

• It helps to reveal the structure of the program.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 28

Procedural Decomposition

• In general, methods allow us to decompose a problem into
smaller subproblems that are easier to solve.

• the resulting code is also easier to understand and maintain

• In our program, we've decomposed the task "write DEE"
into two subtasks:

• write D

• write E (which we perform twice).

• We can use a structure diagram to show the decomposition:

write DEE

write D write E

Procedural Decomposition (cont.)

• How could we use procedural decomposition in printing
the following lyrics?

Dashing through the snow in a one-horse open sleigh,
O'er the fields we go, laughing all the way.
Bells on bobtail ring, making spirits bright.
What fun it is to ride and sing a sleighing song tonight!

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!

A day or two ago, I thought I'd take a ride,
And soon Miss Fanny Bright was seated by my side.
The horse was lean and lank; misfortune seemed his lot;
We got into a drifted bank and then we got upsot.

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 29

Procedural Decomposition (cont.)

Dashing through the snow in a one-horse open sleigh,
O'er the fields we go, laughing all the way.
Bells on bobtail ring, making spirits bright.
What fun it is to ride and sing a sleighing song tonight!

Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!
Jingle bells, jingle bells, jingle all the way!
O what fun it is to ride in a one-horse open sleigh!

A day or two ago, I thought I'd take a ride,
And soon Miss Fanny Bright was seated by my side.
The horse was lean and lank; misfortune seemed his lot;
We got into a drifted bank and then we got upsot.

printSong

printVerse1

printVerse2

printVerse1 printRefrain printVerse2

printHalfRefrain

printRefrain

printHalfRefrain

Code Reuse

• Once we have a set of methods, we can use them to solve
other problems.

• Here's a program that writes the name "ED":
public class BlockLetters4 {

// these methods are the same as before
public static void writeD() {

...
}

public static void writeE() {
...

}

public static void main(String[] args) {
writeE();
System.out.println();
writeD();

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 30

Tracing the Flow of Control

• What is the output of the following program?

public class FlowControlTest {
public static void methodA() {

System.out.println("starting method A");
}

public static void methodB() {
System.out.println("starting method B");

}

public static void methodC() {
System.out.println("starting method C");

}

public static void main(String[] args) {
methodC();
methodA();

}
}

Methods Calling Methods

• The definition of one method can include calls to other methods.

• We've seen this already in the main method:

public static void main(String[] args) {
writeE();
System.out.println();
writeD();

}

• We can also do this in other methods:

public static void foo() {
System.out.println("This is method foo.");
bar();

}

public static void bar() {
System.out.println("This is method bar.");

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 31

Methods Calling Methods (cont.)

• What is the output of the following program?

public class FlowControlTest2 {
public static void methodOne() {

System.out.println("boo");
methodThree();

}

public static void methodTwo() {
System.out.println("hoo");
methodOne();

}

public static void methodThree() {
System.out.println("foo");

}

public static void main(String[] args) {
methodOne();
methodThree();
methodTwo();

}
}

Comments

• Comments are text that is ignored by the compiler.

• Used to make programs more readable

• Two types:

1. line comments: begin with //

• compiler ignores from // to the end of the line

• examples:
// this is a comment

System.out.println(); // so is this

2. block comments: begin with /* and end with */

• compiler ignores everything in between

• typically used at the top of each source file

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 32

Comments (cont.)

/*
* DrawTriangle.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program draws a triangle.
*/

public class DrawTriangle {
public static void main(String[] args) {

System.out.println("Here's my drawing:");

// Draw the triangle using characters.
System.out.println(" ^");
System.out.println(" / \\");
System.out.println(" / \\");
System.out.println(" / \\");
System.out.println(" -------");

}
}

block comments

line comments

Comments (cont.)

• Put comments:

• at the top of each file, naming the author and explaining
what the program does

• at the start of every method other than main,
describing its behavior

• inside methods, to explain complex pieces of code
(this will be more useful later in the course)

• We will deduct points for failing to include the correct comments
and other stylistic problems.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 33

Primitive Data, Variables,
and Expressions;

Simple Conditional Execution

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 2, Part 1

Overview of the Programming Process

Analysis/Specification

Design

Implementation

Testing/Debugging

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 34

Example Problem: Adding Up Your Change

• Let's say that we have a bunch of coins of various types,
and we want to figure out how much money we have.

• Let’s begin the process of developing a program that
does this.

Step 1: Analysis and Specification

• Analyze the problem (making sure that you understand it),
and specify the problem requirements clearly and
unambiguously.

• Describe exactly what the program will do, without worrying
about how it will do it.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 35

Step 2: Design

• Determine the necessary algorithms (and possibly other
aspects of the program) and sketch out a design for them.

• This is where we figure out how the program will solve
the problem.

• Algorithms are often designed using pseudocode.

• more informal than an actual programming language

• allows us to avoid worrying about the syntax of the language

• example for our change-adder problem:

get the number of quarters
get the number of dimes
get the number of nickels
get the number of pennies
compute the total value of the coins
output the total value

Step 3: Implementation

• Translate your design into the programming language.

pseudocode  code

• We need to learn more Java before we can do this!

• Here's a portion or fragment of a Java program for computing
the value of a particular collection of coins:

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• In a moment, we'll use this fragment to examine some of the
fundamental building blocks of a Java program.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 36

Step 4: Testing and Debugging
• A bug is an error in your program.

• Debugging involves finding and fixing the bugs.

• Testing – trying the programs on a variety of inputs –
helps us to find the bugs.

The first program bug! Found by Grace Murray Hopper at Harvard.
(http://www.hopper.navy.mil/grace/grace.htm)

Overview of the Programming Process

Analysis/Specification

Design

Implementation

Testing/Debugging

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 37

Program Building Blocks: Literals
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• Literals specify a particular value.

• They include:

• string literals: "Your total in cents is:"

• are surrounded by double quotes

• numeric literals: 25 3.1416

• commas are not allowed!

Program Building Blocks: Variables
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• Variables are named memory locations that are used
to store a value:

• Variable names must follow the rules for identifiers
(see previous notes).

10quarters

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 38

Program Building Blocks: Statements
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• In Java, a single-line statement typically ends with a semi-colon.

• Later, we will see examples of statements that contain other
statements!

Program Building Blocks: Expressions
quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("Your total in cents is:");
System.out.println(cents);

• Expressions are pieces of code that evaluate to a value.

• They include:

• literals, which evaluate to themselves

• variables, which evaluate to the value that they represent

• combinations of literals, variables, and operators:

25*quarters + 10*dimes + 5*nickels + pennies

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 39

Program Building Blocks: Expressions (cont.)

• Numerical operators include:

+ addition

- subtraction

* multiplication

/ division

% modulus or mod: gives the remainder of a division

example: 11 % 3 evaluates to 2

• Operators are applied to operands:

25 * quarters (2 * length) + (2 * width)

operands
of the * operator operands

of the + operator

Evaluating Expressions

• With expressions that involve more than one mathematical
operator, the usual order of operations applies.

• example:
3 + 4 * 3 / 2 – 7

=

=

=

=

• Use parentheses to:

• force a different order of evaluation

• example:
radius = circumference / (2 * pi);

• make the standard order of operations obvious!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 40

Evaluating Expressions with Variables

• When an expression includes variables, they are first
replaced with their current value.

• Example: recall our code fragment:

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;
= 25* 10 + 10* 3 + 5* 7 + 6
= 250 + 10* 3 + 5* 7 + 6
= 250 + 30 + 5* 7 + 6
= 250 + 30 + 35 + 6
= 280 + 35 + 6
= 315 + 6
= 321

println Statements Revisited
• Recall our earlier syntax for println statements:

System.out.println("text");

• Here is a more complete version:

System.out.println(expression);

• Examples:

System.out.println(3.1416);
System.out.println(2 + 10 / 5);
System.out.println(cents); // a variable
System.out.println("cents"); // a string

any type of expression,
not just text

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 41

println Statements Revisited (cont.)

• The expression is first evaluated, and then the value is printed.

System.out.println(2 + 10 / 5);

System.out.println(4); // output: 4

System.out.println(cents);

System.out.println(321); // output: 321

System.out.println("cents");

System.out.println("cents"); // output: cents

• Note that the surrounding quotes are not displayed when
a string is printed.

println Statements Revisited (cont.)

• Another example:

System.out.println(10*dimes + 5*nickels);

System.out.println(10*3 + 5*7);

System.out.println(65);

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 42

Data Types

• A data type is a set of related data values.

• examples:

• integers

• strings

• characters

• Every data type in Java has a name that we can use
to identify it.

Commonly Used Data Types for Numbers

• int

• used for integers

• examples: 25 -2

• double

• used for real numbers (ones with a fractional part)

• examples: 3.1416 -15.2

• used for any numeric literal with a decimal point,
even if it's an integer:

5.0

• also used for any numeric literal written in scientific notation

3e8 -1.60e-19

more generally:

n x 10p is written nep

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 43

Incorrect Change-Adder Program
/*
* ChangeAdder.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder {
public static void main(String[] args) {

quarters = 10;
dimes = 3;
nickels = 7;
pennies = 6;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);

}
}

Declaring a Variable

• Java requires that we specify the type of a variable before
attempting to use it.

• This is called declaring the variable.

• syntax:

type name;

• examples:
int count; // will hold an integer
double area; // will hold a real number

• A variable declaration can also include more than one
variable of the same type:

int quarters, dimes;

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 44

Assignment Statements

• Used to give a value to a variable.

• Syntax:

variable = expression;

= is known as the assignment operator.

• Examples:
int quarters = 10; // declaration plus assignment

// declaration first, assignment later
int cents;
cents = 25*quarters + 10*dimes + 5*nickels + pennies;

// can also use to change the value of a variable
quarters = 15;

Corrected Change-Adder Program
/*
* ChangeAdder.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 45

Assignment Statements (cont.)

• Steps in executing an assignment statement:

1) evaluate the expression on the right-hand side of the =

2) assign the resulting value to the variable on the
left-hand side of the =

• Examples:
int quarters = 10;

int quarters = 10; // 10 evaluates to itself!

int quartersValue = 25 * quarters;

int quartersValue = 25 * 10;

int quartersValue = 250;

Assignment Statements (cont.)

• An assignment statement does not create a permanent
relationship between variables.

• Example: consider the following code fragment
int x = 10;
int y = x + 2;
System.out.println(y);
x = 20;
System.out.println(y);

• changing the value of x does not change the value of y!

• You can only change the value of a variable by assigning it
a new value.

it outputs:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 46

Assignment Statements (cont.)

• As the values of variables change, it can be helpful to picture
what's happening in memory.

• Examples:

int num1;
int num2 = 120; num1 ? num2 120

after the assignment at left, we get:

num1 = 50; num1 50 num2 120

num1 = num2 * 2; num1 240 num2 120
120 * 2

240

num2 = 60; num1 240 num2 60

undefined

The value of num1 is unchanged!

Assignment Statements (cont.)

• A variable can appear on both sides of the assignment
operator!

• Example (fill in the missing values):

int sum = 13;
int val = 30; sum 13 val 30

sum = sum + val; sum val

val = val * 2; sum val

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 47

Operators and Data Types

• Each data type has its own set of operators.

• the int version of an operator produces an int result

• the double version produces a double result

• etc.

• Rules for numeric operators:

• if the operands are both of type int,
the int version of the operator is used.

• examples: 15 + 30

1 / 2

25 * quarters

• if at least one of the operands is of type double,
the double version of the operator is used.

• examples: 15.5 + 30.1

1 / 2.0

25.0 * quarters

Incorrect Extended Change-Adder Program
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);
double dollars = cents / 100;
System.out.print("total in dollars is: ");
System.out.println(dollars);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 48

Two Types of Division

• The int version of the / operator performs integer division,
which discards the fractional part of the result
(i.e., everything after the decimal).

• examples:

expression value

5 / 3 1

11 / 5 2

• The double version of the / operator performs
floating-point division, which keeps the fractional part.

• examples:

expression value

5.0 / 3.0 1.6666666666666667

11 / 5.0 2.2

How Can We Fix Our Program?
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.print("total in cents is: ");
System.out.println(cents);
double dollars = cents / 100;
System.out.print("total in dollars is: ");
System.out.println(dollars);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 49

String Concatenation

• The meaning of the + operator depends on the types of
the operands.

• When at least one of the operands is a string, the + operator
performs string concatenation.

• combines two or more strings into a single string

• example:

System.out.println("hello " + "world");

is equivalent to
System.out.println("hello world");

String Concatenation (cont.)

• If one operand is a string and the other is a number,
the number is converted to a string and then concatenated.

• example: instead of writing
System.out.print("total in cents: ");
System.out.println(cents);

we can write
System.out.println("total in cents: " + cents);

• Here's how the evaluation occurs:
int cents = 321;
System.out.println("total in cents: " + cents);

"total in cents: " + 321
"total in cents: " + "321"
"total in cents: 321"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 50

Change-Adder Using String Concatenation
/*
* ChangeAdder2.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program determines the value of some coins.
*/

public class ChangeAdder2 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int cents;

// compute and print the total value
cents = 25*quarters + 10*dimes + 5*nickels + pennies;
System.out.println("total in cents is: " + cents);
double dollars = cents / 100.0;
System.out.println("total in dollars is: " +

dollars);
}

}

An Incorrect Program for Computing a Grade
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = pointsEarned / possiblePoints * 100;
System.out.println("The grade is: " + grade);

}
}

• What is the output?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 51

Will This Fix Things?
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = pointsEarned / possiblePoints * 100.0;
System.out.println("The grade is: " + grade);

}
}

Type Casts

• To compute the percentage, we need to tell Java to treat
at least one of the operands as a double.

• We do so by performing a type cast:

grade = (double)pointsEarned / possiblePoints * 100;

or

grade = pointsEarned / (double)possiblePoints * 100;

• General syntax for a type cast:

(type)variable

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 52

Corrected Program for Computing a Grade
/*
* ComputeGrade.java
* Dave Sullivan (dgs@cs.bu.edu)
* This program computes a grade as a percentage.
*/

public class ComputeGrade {
public static void main(String[] args) {

int pointsEarned = 13;
int possiblePoints = 15;

// compute and print the grade as a percentage
double grade;
grade = (double)pointsEarned / possiblePoints * 100;
System.out.println("The grade is: " + grade);

}
}

Evaluating a Type Cast

• Example of evaluating a type cast:

pointsEarned = 13;
possiblePoints = 15;

grade = (double)pointsEarned / possiblePoints * 100;
(double)13 / 15 * 100;

13.0 / 15 * 100;
0.8666666666666667 * 100;
86.66666666666667;

• Note that the type cast occurs after the variable is replaced
by its value.

• It does not change the value that is actually stored in the variable.

• in the example above, pointsEarned is still 13

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 53

Type Conversions

• Java will automatically convert values from one type
to another provided there is no potential loss of information.

• Example: we can perform the following assignment
without a type cast:

double d = 3;

• the JVM will convert the integer value 3 to the
floating-point value 3.0 and assign that value to d

• any int can be assigned to a double without losing
any information

variable of
type double

value of
type int

Type Conversions (cont.)

• The compiler will complain if the necessary type conversion
could (at least in some cases) lead to a loss of information:

int i = 7.5; // won't compile

• This is true regardless of the actual value being converted:
int i = 5.0; // won't compile

• To make the compiler happy in such cases, we need to
use a type cast:

double area = 5.7;
int approximateArea = (int)area;
System.out.println(approximateArea);

• what would the output be?

variable of
type int

value of
type double

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 54

Type Conversions (cont.)

• When an automatic type conversion is performed as part of
an assignment, the conversion happens after the evaluation
of the expression to the right of the =.

• Example:
double d = 1 / 3;

= 0; // uses integer division. why?

= 0.0;

A Block of Code

• A block of code is a set of statements that is treated as a
single unit.

• In Java, a block is typically surrounded by curly braces.

• Examples:

• each class is a block

• each method is a block

public class MyProgram {
public static void main(String[] args) {

int i = 5;
System.out.println(i * 3);
int j = 10;
System.out.println(j / i);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 55

Variable Scope

• The scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable in Java:

• begins at the point at which it is declared

• ends at the end of the innermost block
that encloses the declaration

public class MyProgram2 {
public static void main(String[] args) {

System.out.println("Welcome!");
System.out.println("Let's do some math!");
int j = 10;
System.out.println(j / 5);

}
}

• Because of these rules, a variable cannot be used outside
of the block in which it is declared.

scope of j

Another Example

public class MyProgram3 {
public static void method1() {

int i = 5;
System.out.println(i * 3);
int j = 10;
System.out.println(j / i);

}

public static void main(String[] args) {
// The following line won't compile.
System.out.println(i + j);

int i = 4;
System.out.println(i * 6);
method1();

}
}

scope of
method1's
version of iscope of j

scope of
main's

version of i

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 56

Local Variables vs. Global Variables

public class MyProgram {
static int x = 10; // a global variable

public static void method1() {
int y = 5; // a local variable
System.out.println(x + y);
...

• Variables that are declared inside a method are local variables.

• they cannot be used outside that method.

• In theory, we can define global variables that are available
throughout the program.

• they are declared outside of any method,
using the keyword static

• However, we generally avoid global variables.

• can lead to problems in which one method accidentally
affects the behavior of another method

Yet Another Change-Adder Program!

• Let's change it to print the result in dollars and cents.

• 321 cents should print as 3 dollars, 21 cents

public class ChangeAdder3 {
public static void main(String[] args) {

int quarters = 10;
int dimes = 3;
int nickels = 7;
int pennies = 6;
int dollars, cents;

cents = 25*quarters + 10*dimes + 5*nickels + pennies;

// what should go here?

System.out.println("dollars = " + dollars);
System.out.println("cents = " + cents);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 57

Conditional Execution: Deciding What to Do

• What if the user has 121 cents?

• will print as 1 dollars, 21 cents

• would like it to print as 1 dollar, 21 cents

• We need a means of deciding what to print at runtime.

• known as conditional execution

• the flow of control depends on a condition or test.

• Here's an example of how it would work:

System.out.print(dollars);
if (dollars == 1) {

System.out.print(" dollar, ");
} else {

System.out.print(" dollars, ");
}
// code for printing cents goes here

Simple Conditional Execution in Java

if (condition) {

true block
} else {

false block
}

• If the condition is true:

• the statement(s) in the true block are executed

• the statement(s) in the false block (if any) are skipped

• If the condition is false:

• the statement(s) in the false block (if any) are executed

• the statement(s) in the true block are skipped

if (condition) {

true block
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 58

Expressing Simple Conditions

• Java provides a set of operators called relational operators
for expressing simple conditions:

operator name examples

< less than 5 < 10
num < 0

> greater than 40 > 60 (which is false!)
count > 10

<= less than or equal to average <= 85.8

>= greater than or equal to temp >= 32

== equal to sum == 10

firstChar == 'P'

!= not equal to age != myAge

(don't confuse with =)

Change Adder With Conditional Execution
public class ChangeAdder3 {

public static void main(String[] args) {
...

System.out.print(dollars);
if (dollars == 1) {

System.out.print(" dollar, ");
} else {

System.out.print(" dollars, ");
}

// Add statements to correctly print cents.
// Try to use only an if, not an else.

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 59

Classifying Bugs
• Syntax errors

• found by the compiler

• occur when code doesn't follow the rules of the
programming language

• examples?

Classifying Bugs
• Syntax errors

• found by the compiler

• occur when code doesn't follow the rules of the
programming language

• examples?

• Logic errors

• the code compiles, but it doesn’t do what you intended
it to do

• may or may not cause the program to crash

• called runtime errors if the program crashes

• often harder to find!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 60

Common Syntax Errors Involving Variables

• Failing to declare the type of the variable.

• Failing to initialize a variable before you use it:
int radius;

double area = 3.1416 * radius * radius;

• Trying to declare a variable when there is already a variable
with that same name in the current scope:

int val1 = 10;
System.out.print(val1 * 2);
int val1 = 20;

Will This Compile?

public class ChangeAdder {
public static void main(String[] args) {

...
int cents;
cents = 25*quarters + 10*dimes + 5*nickels + pennies;

if (cents % 100 == 0) {
int dollars = cents / 100;
System.out.println(dollars + " dollars");

} else {
int dollars = cents / 100;
cents = dollars % 100;
System.out.println(dollars + " dollars and "

+ cents + " cents");
}

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 61

Representing Integers

• Like all values in a computer, integers are stored as
binary numbers – sequences of bits (0s and 1s).

• With n bits, we can represent 2n different values.

• examples:

• 2 bits give 22 = 4 different values

00, 01, 10, 11

• 3 bits give 23 = 8 different values

000, 001, 010, 011, 100, 101, 110, 111

• When we allow for negative integers (which Java does)
n bits can represent any integer from –2n-1 to 2n-1 – 1.

• there's one fewer positive value to make room for 0

Java’s Integer Types

• Java’s actually has four primitive types for integers, all of which
represent signed integers.

type # of bits range of values

byte 8 –27 to 27 – 1
(–128 to 127)

short 16 –215 to 215 – 1
(–32768 to 32767)

int 32 –231 to 231 – 1
(approx. +/–2 billion)

long 64 –263 to 263 – 1g

• We typically use int, unless there’s a good reason not to.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 62

Java’s Floating-Point Types

• Java has two primitive types for floating-point numbers:

type # of bits approx. range approx. precision

float 32 +/–10–45 to +/–1038 7 decimal digits

double 64 +/–10–324 to +/–10308 15 decimal digits

• We typically use double because of its greater precision.

• Number the bits from right to left

• example:

• For each bit that is 1, add 2n, where n = the bit number

• example:

decimal value = 26 + 24 + 23 + 22 + 20

64 + 16 + 8 + 4 + 1 = 93

• another example: what is the integer represented by
01001011?

10111010
b0b1b2b3b4b5b6b7

10111010
b0b1b2b3b4b5b6b7

Binary to Decimal

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 63

Decimal to Binary

• Go in the reverse direction: determine which powers of 2
need to be added together to produce the decimal number.

• example: 42 = 32 + 8 + 2
= 25 + 23 + 21

• thus, bits 5, 3, and 1 are all 1s: 42 = 00101010

• Start with the largest power of 2 less than or equal to the
number, and work down from there.

• example: what is 21 in binary?

16 is the largest power of 2 <= 21: 21 = 16 + 5

now, break the 5 into powers of 2: 21 = 16 + 4 + 1

1 is a power of 2 (20), so we’re done: 21 = 16 + 4 + 1

= 24 + 22 + 20

= 00010101

Decimal to Binary (cont.)

• Another example: what is 90 in binary?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 64

printf: Formatted Output
• When printing a decimal number, you may want to limit yourself

to a certain number of places after the decimal.

• You can do so using the System.out.printf method.

• example:

System.out.printf("%.2f", 1.0/3);

will print

0.33

• the number after the decimal point in the first parameter
indicates how many places after the decimal should be used

• There are other types of formatting that can also be performed
using this method.

• docs.oracle.com/javase/tutorial/java/data/numberformat.html

Review
• Consider the following code fragments

1) 1000

2) 10 * 5

3) System.out.println("Hello");

4) hello

5) num1 = 5;

6) 2*width + 2*length

7) main

• Which of them are examples of:

• literals?

• identifiers?

• expressions?

• statements?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 65

Definite Loops

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 2, Part 2

Using a Variable for Counting

• Let's say that we're using a variable i to count the number
of times that something has been done:

int i = 0; i 0

• To increase the count, we can do this:

i = i + 1;

0 + 1

1 i 1

• To increase the count again, we repeat the same assignment:

i = i + 1;

1 + 1

2 i 2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 66

Increment and Decrement Operators

• Instead of writing

i = i + 1;

we can use a shortcut and just write

i++;

• ++ is known as the increment operator.

• increment = increase by 1

• Java also provides a decrement operator (--).

• decrement = decrease by 1

• example:
i--;

Review: Flow of Control

• Flow of control = the order in which instructions are executed

• By default, instructions are executed in sequential order.

instructions flowchart
int sum = 0;

int num1 = 5;

int num2 = 10;

sum = num1 + num2;

• When we make a method call, the flow of control "jumps" to
the method, and it "jumps" back when the method completes.

int sum = 0;

int num1 = 5;

int num2 = 10;

sum = num1 + num2;

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 67

Altering the Flow of Control: Repetition

• To solve many types of problems, we need to be able
to modify the order in which instructions are executed.

• One reason for doing this is to allow for repetition.

Example of the Need for Repetition

• Here's a method for writing a large block letter L:

public static void writeL() {
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("|");
System.out.println("+----------");

}

• Rather than duplicating the statement
System.out.println("|");

seven times, we'd like to have this statement appear just once
and execute it seven times.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 68

for Loops

• To repeat one or more statements multiple times, we can
use a construct known as a for loop.

• Here's a revised version of our writeL method that uses one:

public static void writeL() {
for (int i = 0; i < 7; i++) {

System.out.println("|");
}
System.out.println("+----------");

}

for Loops

• Syntax:

for (initialization ; continuation test ; update) {

one or more statements

}

• In our example:

for (int i = 0 ; i < 7 ; i++) {

System.out.println("|");

}

• The statements inside the loop are known as
the body of the loop.

• In our example, we use the variable i to count the number
of times that the body has been executed.

initialization continuation test

update

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 69

Executing a for Loop

for (initialization ; continuation test ; update) {
body of the loop

}

execute statement
after the loop

yes

nois the
test true?

execute the
body of the loop

perform the
update

perform the
initialization

Notes:
• the initialization is

only performed once

• the body is only
executed if the
test is true

• we repeatedly do:
test
body
update

until the test is false

Executing Our for Loop

for (int i = 0; i < 7; i++) {
System.out.println("|");

}

i i < 7 action
0 true print 1st "|"

1 true print 2nd "|"

2 true print 3rd "|"

3 true print 4th "|"

4 true print 5th "|"

5 true print 6th "|"

6 true print 7th "|"

7 false execute stmt.
after the loopexecute statement

after the loop

yes

nois i < 7
true?

execute body:
System.out.println("|");

perform update:
i++

initialization:
int i = 0;

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 70

Definite Loops
• For now, we'll limit ourselves to definite loops –

which repeat actions a fixed number of times.

• To repeat the body of a loop N times, we typically
take one of the following approaches:

for (int i = 0; i < N; i++) {
<body of the loop>

}

OR

for (int i = 1; i <= N; i++) {
<body of the loop>

}

• Each time that the body of a loop is executed is known as
an iteration of the loop.

• the loops shown above perform N iterations

Other Examples of Definite Loops
• What does this loop do?

for (int i = 0; i < 3; i++) {
System.out.println("Hip! Hip!");
System.out.println("Hooray!");

}

• What does this loop do?

for (int i = 0; i < 10; i++) {
System.out.println(i);

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 71

Using Different Initializations, Tests, and Updates
• The second loop from the previous page would be clearer

if we expressed it like this:

for (int i = 0; i <= 9; i++) {
System.out.println(i);

}

• Different problems may require different initializations,
continuation tests, and updates.

• What does this code fragment do?

for (int i = 2; i <= 10; i = i + 2) {
System.out.println(i * 10);

}

Tracing a for Loop

• Let's trace through the final code fragment from the last slide:

for (int i = 2; i <= 10; i = i + 2) {
System.out.println(i * 10);

}

i i <= 10 value printed

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 72

Common Mistake

• You should not put a semi-colon after the for-loop header:

for (int i = 0; i < 7; i++); {
System.out.println("|");

}

• The semi-colon ends the for statement.

• thus, it doesn't repeat anything!

• The println is independent of the for statement,
and only executes once.

Practice
• Fill in the blanks below to print the integers from 1 to 10:

for (____________; ____________; ____________) {
System.out.println(i);

}

• Fill in the blanks below to print the integers from 10 to 20:

for (____________; ____________; ____________) {
System.out.println(i);

}

• Fill in the blanks below to print the integers from 10 down to 1:

for (____________; ____________; ____________) {
System.out.println(i);

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 73

Other Java Shortcuts

• Recall this code fragment:

for (int i = 2; i <= 10; i = i + 2) {
System.out.println(i * 10);

}

• Instead of writing

i = i + 2;

we can use a shortcut and just write

i += 2;

• In general

variable += expression;

is equivalent to

variable = variable + (expression);

Java Shortcuts

• Java offers other shortcut operators as well.

• Here's a summary of all of them:

shortcut equivalent to

var++; var = var + 1;

var--; var = var – 1;

var += expr; var = var + (expr);

var -= expr; var = var - (expr);

var *= expr; var = var * (expr);

var /= expr; var = var / (expr);

var %= expr; var = var % (expr);

• Important: the = must come after the mathematical operator.

+= is correct

=+ is not!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 74

More Practice
• Fill in the blanks below to print the even integers in reverse

order from 20 down to 6:

for (____________; ____________; ____________) {
System.out.println(i);

}

Find the Error

• Let's say that we want to print the numbers from 1 to n.

• Where is the error in the following code?

for (int i = 1; i < n; i++) {
System.out.println(i);

}

• This is an example of an off-by-one error. Beware of these
when writing your loop conditions!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 75

Example Problem: Printing a Pattern, version 1

• Ask the user for a positive integer (call it n), and print a pattern
containing n asterisks.

• example:
Enter a positive integer: 3

• Let's use a for loop to do this:

// code to read n goes here...

for () {
System.out.print("*");

}
System.out.println();

Example Problem: Printing a Pattern, version 2

• Print a pattern containing n lines of n asterisks.

• example:
Enter a positive integer: 3

• One way to do this is to use a nested loop – one loop inside
another:

// code to read in n goes here...

for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {

System.out.print("*");
}
System.out.println();

}

• This makes it easier to create a similar box of a different size.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 76

Nested Loops: Repeating a Repetition!

• When you have a nested loop, the inner loop is executed to
completion for every iteration of the outer loop.

for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {

System.out.println(i + " " + j);
}

}

i i < 2 j j < 3 value printed
0 true 0 true "0 0"

1 true "0 1"
2 true "0 2"
3 false none

1 true 0 true "1 0"
1 true "1 1"
2 true "1 2"
3 false none

2 false (so we exit the outer loop)

full output:
0 0
0 1
0 2
1 0
1 1
1 2

Nested Loops: Repeating a Repetition!

• What if we add the highlighted statement?

for (int i = 0; i < 2; i++) {
for (int j = 0; j < 3; j++) {

System.out.println(i + " " + j);
}
System.out.println("---");

}

full output:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 77

Nested Loops (cont.)

• How many times is the println statement executed?

for (int i = 0; i < 5; i++) {
for (int j = 0; j < 7; j++) {

System.out.println(i + " " + j);
}

}

• What about here?

for (int i = 0; i < 5; i++) {
for (int j = 0; j < i; j++) {

System.out.println(i + " " + j);
}

}

Tracing a Nested for Loop

for (int i = 0; i < 5; i++) {
for (int j = 0; j < i; j++) {

System.out.println(i + " " + j);
}

}

i i < 5 j j < i value printed

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 78

Recall: Variable Scope

• The scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable in Java:

• begins at the point at which it is declared

• ends at the end of the innermost block
that encloses the declaration

public class MyProgram2 {
public static void main(String[] args) {

System.out.println("Welcome!");
System.out.println("Let's do some math!");
int j = 10;
System.out.println(j / 5);

}
}

scope of j

Special Case: for Loops and Variable Scope

• When a variable is declared in the initialization clause of
a for loop, its scope is limited to the loop.

• Example:

public static void myMethod() {
for (int i = 0; i < 5; i++) {

int j = i * 3;
System.out.println(j);

}

// the following line won't compile
System.out.print(i);
System.out.println(" values were printed.");

}

scope of i

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 79

Special Case: for Loops and Variable Scope (cont.)

• To allow i to be used outside the loop, we need to
declare it outside the loop:

• Example:

public static void myMethod() {
int i;
for (i = 0; i < 5; i++) {

int j = i * 3;
System.out.println(j);

}

// now this will compile
System.out.print(i);
System.out.println(" values were printed.");

}

scope
of i

• Limiting the scope of a loop variable allows us to use the
standard loop templates multiple times in the same method.

• Example:

public static void myMethod() {
for (int i = 0; i < 5; i++) {

int j = i * 3;
System.out.println(j);

}

for (int i = 0; i < 7; i++) {
System.out.println("Go Crimson!");

}
}

scope of
first i

scope of
second i

Special Case: for Loops and Variable Scope (cont.)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 80

Review: Simple Repetition Loops

• Recall our two templates for performing N repetitions:

for (int i = 0; i < N; i++) {
// code to be repeated

}

for (int i = 1; i <= N; i++) {
// code to be repeated

}

• How may repetitions will each of the following perform?

for (int i = 1; i <= 15; i++) {
System.out.println("Hello");
System.out.println("How are you?");

}

for (int i = 0; i < 2*j; i++) {
…

}

More Practice: Tracing a Nested for Loop

for (int i = 1; i <= 3; i++) {
for (int j = 0; j < 2*i + 1; j++) {

System.out.print("*");
}
System.out.println();

}

i i <= 3 j j < 2*i + 1 output

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 81

Case Study: Drawing a Complex Figure

• Here's the figure:

()
(())

((()))
(((())))
========
|::::::|
|::::|
|::|
|::|
|::|
|::|
+==+

• To begin with, we'll focus on creating this exact figure.

• Then we'll modify our code so that the size of the figure
can easily be changed.

• we'll use for loops to allow for this

Problem Decomposition

• We begin by breaking the problem into subproblems,
looking for groups of lines that follow the same pattern:

()
(())

((()))
(((())))

========

|::::::|
|::::|

|::|
|::|
|::|
|::|

+--+

 rim of torch

 handle of torch

 flame

 top of torch

 bottom of torch

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 82

Problem Decomposition (cont.)

• This gives us the following initial pseudocode:

()
(())

((()))
(((())))

========

|::::::|
|::::|

|::|
|::|
|::|
|::|

+--+

draw the flame
draw the rim of the torch
draw the top of the torch
draw the handle of the torch
draw the bottom of the torch

• This is a high-level description
of what needs to be done.

• We'll gradually expand the pseudocode
into more and more detailed instructions –
until we're able to implement them in Java.

Drawing the Flame

• Let's begin by refining our specification
for drawing the flame.

• Here's our initial pseudocode for this task:

for (each of 4 lines) {
print some spaces (possibly 0)
print some left parentheses
print some right parentheses
go to a new line

}

• We need formulas for how many spaces and parens should
be printed on a given line.

1 ()
2 (())
3 ((()))
4(((())))

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 83

Finding the Formulas

• To begin with, we:

• number the lines in the flame

• form a table of the number of spaces
and parentheses on each line:

line spaces parens (each type)
1 3 1
2 2 2
3 1 3
4 0 4

• Then we find the formulas.

• assume the formulas are linear functions of the line number:
c1*line + c2

where c1 and c2 are constants

• parens = ?
• spaces = ?

1 ()
2 (())
3 ((()))
4(((())))

Refining the Pseudocode

• Given these formulas, we can refine our pseudocode:

for (each of 4 lines) {
print some spaces (possibly 0)
print some left parentheses
print some right parentheses
go to a new line

}

for (line going from 1 to 4) {
print 4 – line spaces
print line left parentheses
print line right parentheses
go to a new line

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 84

Implementing the Pseudocode in Java

• We use nested for loops:

for (line going from 1 to 4) {
print 4 – line spaces
print line left parentheses
print line right parentheses
go to a new line

}

for (int line = 1; line <= 4; line++) {
for (int i = 0; i < 4 - line; i++) {

System.out.print(" ");
}
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}
System.out.println();

}

A Method for Drawing the Flame

• We put the code in its own static method, and add some
explanatory comments:

public static void drawFlame() {
for (int line = 1; line <= 4; line++) {

// spaces to the left of the current line
for (int i = 0; i < 4 - line; i++) {

System.out.print(" ");
}

// left and right parens on the current line
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}

System.out.println();
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 85

Drawing the Top of the Torch

• What's the initial pseudocode for this task?

for (each of 2 lines) {

}

• Here's a table for the number of spaces and number of colons:
line spaces colons
1 0 6
2 1 4

• spaces = ?

• colons decreases by 2 as line increases by 1
 colons = -2*line + c2 for some number c2

• try different values, and eventually get: colons = ?

1|::::::|
2 |::::|

Refining the Pseudocode

• Once again, we use the formulas to refine our pseudocode:

for (each of 2 lines) {
print some spaces (possibly 0)
print a single vertical bar
print some colons
print a single vertical bar
go to a new line

}

for (line going from 1 to 2) {
print line - 1 spaces
print a single vertical bar
print -2*line + 8 colons
print a single vertical bar
go to a new line

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 86

A Method for Drawing the Top of the Torch

public static void drawTop() {
for (int line = 1; line <= 2; line++) {

// spaces to the left of the current line
for (int i = 0; i < line - 1; i++) {

System.out.print(" ");
}

// bars and colons on the current line
System.out.print("|");
for (int i = 0; i < –2*line + 8; i++) {

System.out.print(":");
}
System.out.print("|");

System.out.println();
}

}

Drawing the Rim

• This always has only one line,
so we don't need nested loops.

• However, we still need a single loop,
because we want to be able to scale
the size of the figure.

• What should the code look like?

for (; ;) {

}

• This code also goes in its own method, called drawRim()

========

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 87

Incremental Development

• We take similar steps to implement methods for the
remaining subtasks.

• After completing a given method, we test and debug it.

• The main method just calls the methods for the subtasks:

public static void main(String[] args) {
drawFlame();
drawRim();
drawTop();
drawHandle();
drawBottom();

}

• See the example program DrawTorch.java

Using Class Constants

• To make the torch larger or smaller, we'd need to make
many changes.

• the size of the figure is hard-coded into most methods

• To make the program more flexible, we can store info. about
the figure's dimensions in one or more class constants.

• like variables, but their values are fixed

• can be used throughout the program

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 88

Using Class Constants (cont.)

• We only need one constant for the torch.

• for the default size, it equals 2

• its connection to some of the dimensions
is shown at right

• We declare it at the very start of the class:
public class DrawTorch2 {

public static final int SCALE_FACTOR = 2;
...

• General syntax:

public static final type name = expression;

• conventions:

• capitalize all letters in the name
• put an underscore ('_') between multiple words

()
(())

((()))
(((())))
========

|::::::|
|::::|

2*22*2

4*2

2*2

2

Scaling the Figure

• Here are some other versions of the figure:

() ()
(()) (())

((())) ====
(((()))) |::|

((((())))) ||
(((((()))))) ||
============ ++
|::::::::::|
|::::::::|
|::::::|
|::::|
|::::|
|::::|
|::::|
|::::|
|::::|
+====+

SCALE_FACTOR = 3

SCALE_FACTOR = 1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 89

Revised Method for Drawing the Flame

• We replace the two 4s with 2*SCALE_FACTOR:

public static void drawFlame() {
for (int line = 1; line <= 2*SCALE_FACTOR; line++) {

// spaces to the left of the flame
for (int i = 0; i < 2*SCALE_FACTOR - line; i++) {

System.out.print(" ");
}

// the flame itself, both left and right halves
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}

System.out.println();
}

}

()
(())

((()))
(((())))

2*22*2

2*2

Making the Rim Scaleable
• How does the width of the rim depend on SCALE_FACTOR?

() () ()
(()) (()) (())

((())) ((())) ====
(((()))) (((())))

((((())))) ========
(((((())))))
============

• Use a table!

SCALE_FACTOR width of rim
1 4
2 8
3 12

width of rim = ?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 90

Revised Method for Drawing the Rim

• Original version (for the default size):

public static void drawRim() {
for (int i = 0; i < 8; i++) {

System.out.print("=");
}
System.out.println();

}

• Scaleable version:

public static void drawRim() {
for (int i = 0; i < 4*SCALE_FACTOR; i++) {

System.out.print("=");
}
System.out.println();

}

Making the Top of the Torch Scaleable

• For SCALE_FACTOR = 2, we got:

number of lines = 2
spaces = line – 1
colons = -2 * line + 8

• What about SCALE_FACTOR = 3?

line spaces colons

1 0 10
2 1 8
3 2 6

number of lines = 3
spaces = ?
colons = ?

• in general, number of lines = ?

1|::::::|
2 |::::|

1|::::::::::|
2 |::::::::|
3 |::::::|

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 91

Making the Top of the Torch Scaleable (cont.)

• Compare the two sets of formulas:

SCALE_FACTOR = 2 SCALE_FACTOR = 3
spaces = line – 1 spaces = line – 1
colons = -2 * line + 8 colons = -2 * line + 12

• There's no change in:

• the formula for spaces

• the first constant in the formula for colons

• Use a table for the second constant:

SCALE_FACTOR constant
2 8
3 12

constant = ?

• Scaleable formulas: spaces = line – 1
colons = ?

Revised Method for Drawing the Top of the Torch

public static void drawTop() {
for (int line = 1; line <= SCALE_FACTOR; line++) {

// spaces to the left of the current line
for (int i = 0; i < line - 1; i++) {

System.out.print(" ");
}

// bars and colons on the current line
System.out.print("|");
for (int i = 0; i < -2*line + 4*SCALE_FACTOR; i++) {

System.out.print(":");
}
System.out.print("|");

System.out.println();
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 92

Practice: The Torch Handle

• Pseudocode for default size:

• Java code for default size:
public static void drawHandle() {

}

()
(())

((()))
(((())))
========
|::::::|
|::::|

1 |::|
2 |::|
3 |::|
4 |::|

+==+

Practice: Making the Handle Scaleable

• We again compare two different sizes.

• SCALE_FACTOR # lines spaces colons
2 4 2 2
3 6 3 4

• number of lines = ?
spaces = ?
colons = ?

|::::::|
|::::|

1 |::|
2 |::|
3 |::|
4 |::|

|::::::::::|
|::::::::|
|::::::|

1 |::::|
2 |::::|
3 |::::|
4 |::::|
5 |::::|
6 |::::|

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 93

Revised Method for Drawing the Handle

• What changes do we need to make?

public static void drawHandle() {
for (int line = 1; line <= 4; line++) {

for (int i = 0; i < 2; i++) {
System.out.print(" ");

}
System.out.print("|");
for (int i = 0; i < 2; i++) {

System.out.print(":");
}
System.out.println("|");

}
}

Extra Practice: Printing a Pattern, version 3

• Print a triangular pattern with lines containing n, n – 1, …, 1
asterisks.

• example:
Enter a positive integer: 3

**
*

• How would we use a nested loop to do this?

for () {

for () {
System.out.print("*");

}
System.out.println();

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 94

Methods with Parameters
and Return Values

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 3, Part 1

Review: Static Methods
• We've seen how we can use static methods to:

1. capture the structure of a program – breaking a task
into subtasks

2. eliminate code duplication

• Thus far, our methods have been limited in their ability
to accomplish these tasks.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 95

A Limitation of Simple Static Methods
• For example, in our DrawTorch program, there are several
for loops that each print a series of spaces, such as:

for (int i = 0; i < 4 - line; i++) {
System.out.print(" ");

}

for (int i = 0; i < line - 1; i++) {
System.out.print(" ");

}

• However, despite the fact that all of these loops print spaces,
we can't replace them with a method that looks like this:

public static void printSpaces() {
…

Why not?

Parameters
• In order for a method that prints spaces to be useful,

we need one that can print an arbitrary number of spaces.

• Such a method would allow us to write commands like these:

printSpaces(5);

printSpaces(4 - line);

where the number of spaces to be printed is specified
between the parentheses.

• To do so, we write a method that has a parameter:

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 96

Parameters (cont.)

• A parameter is a special type of variable that allows us
to pass information into a method.

• Consider again this method:
public static void printSpaces(int numSpaces) {

for (int i = 0; i < numSpaces; i++) {
System.out.print(" ");

}
}

• When we execute a method call like

printSpaces(10);

the expression specified between the parentheses:

• is evaluated

• is assigned to the parameter

• can thereby be used by the code inside the method

Parameters (cont.)

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}

• Here's an example with a more
complicated expression:

int line = 2;
printSpaces(4 - line);

4 - 2
2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 97

A Note on Terminology
• The term parameter is used for both:

• the variable specified in the method header

• known as a formal parameter

• the value that you specify when you make the method call

• known as an actual parameter

• also known as an argument

public static void printSpaces(int numSpaces) {
for (int i = 0; i < numSpaces; i++) {

System.out.print(" ");
}

}

printSpaces(10);

actual parameter / argument

formal parameter

Parameters and Generalization
• Parameters allow us to generalize a task.

• They allow us to write one method that can perform
a family of related tasks – instead of writing a separate
method for each separate task.

print5Spaces()

print10Spaces()

print20Spaces()

print100Spaces()

…

printSpaces(parameter)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 98

Representing Individual Characters

• So far we've learned about two data types:

• int

• double

• The char type is used to represent individual characters.

• To specify a char literal, we surround the character
by single quotes:

• examples: 'a' 'Z' '0' '7' '?' '\\'

• can only represent single characters

• don’t use double-quotes!

"a" is a string, not a character

Methods with Multiple Parameters

• Here's a method with more than one parameter:

public static void printChars(char ch, int num) {
for (int i = 0; i < num; i++) {

System.out.print(ch);
}

}

• Example of calling this method:

printChars(' ', 10);

• Notes:

• the parameters (both formal and actual) are separated
by commas

• each formal parameter must be preceded by its type

• the actual parameters are evaluated and assigned to
the corresponding formal parameters

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 99

Example of Using a Method with Parameters
public static void drawFlame() {

for (int line = 1; line <= 4; line++) {
for (int i = 0; i < 4 - line; i++) {

System.out.print(" ");
}
for (int i = 0; i < line; i++) {

System.out.print("(");
}
for (int i = 0; i < line; i++) {

System.out.print(")");
}
System.out.println();

}
}

public static void drawFlame() {
for (int line = 1; line <= 4; line++) {

printChars(' ', 4 - line);
printChars('(', line);
printChars(')', line);
System.out.println();

}
}

replace nested loops with method calls

Recall: Variable Scope

• The scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable in Java:

• begins at the point at which it is declared

• ends at the end of the innermost block
that encloses the declaration

public static void printResults(int a, int b) {
System.out.println("Here are the stats:");

int sum = a + b;
System.out.print("sum = ");
System.out.println(sum);

double avg = (a + b) / 2.0;
System.out.print("average = ");
System.out.println(avg);

}

scope of
avg

scope of sum

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 100

• What about the parameters of a method?

• they do not follow the default scope rules!

• their scope is limited to their method

Special Case: Parameters and Variable Scope

public class MyClass {
public static void printResults(int a, int b) {

System.out.println("Here are the stats:");

int sum = a + b;
System.out.print("sum = ");
System.out.println(sum);

double avg = (a + b) / 2.0;
System.out.print("average = ");
System.out.println(avg);

}

static int c = a + b; // does not compile!
}

scope
of

a and b

Practice with Scope
public static void drawRectangle(int height) {

for (int i = 0; i < height; i++) {

// which variables could be used here?
int width = height * 2;
for (int j = 0; j < width; j++) {

System.out.print("*");

// what about here?
}

// what about here?
System.out.println();

}
// what about here?

}

public static void repeatMessage(int numTimes) {

// what about here?
for (int i = 0; i < numTimes; i++) {

System.out.println("What is your scope?");
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 101

Practice with Parameters
public static void printValues(int a, int b) {

System.out.println(a + " " + b);
b = 2 * a;
System.out.println("b" + b);

}

public static void main(String[] args) {
int a = 2;
int b = 3;
printValues(b, a);
printValues(7, b * 3);
System.out.println(a + " " + b);

}

• What's the output?

A Limitation of Parameters

• Parameters allow us to pass values into a method.

• They don't allow us to get a value out of a method.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 102

A Limitation of Parameters (cont.)

• Example: using a method to compute the opposite of a number

• This won't work:

public static void opposite(int number) {
number = number * -1;

}

public static void main(String[] args) {
// read in points from the user

opposite(points);
…

}

• the opposite method changes the value of number,
but number can't be used outside of that method

• the method doesn't change the value of points

Methods That Return a Value

• To compute the opposite of a number, we need a method
that's able to return a value.

• Such a method would allow us to write statements like this:

int penalty = opposite(points);

• The value returned by the method would replace
the method call in the original statement.

• Example:

int points = 10;
int penalty = opposite(points);

int penalty = -10; // after the method completes

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 103

Defining a Method that Returns a Value

• Here's a method that computes and returns the opposite
of a number:

public static int opposite(int number) {
return number * -1;

}

• In the header of the method, void is replaced by int,
which is the type of the returned value.

• The returned value is specified using a return statement.
Syntax:

return expression;

• expression is evaluated

• the resulting value replaces the method call in
the statement that called the method

Defining a Method that Returns a Value (cont.)

• The complete syntax for the header of a static method is:

public static returnType name(type1 param1, type2 param2, …)

• Note: a method call is a type of expression!

• it evaluates to its return value

int opp = opposite(10);

int opp = -10;

• In our earlier methods, the return type was always void:

public static void printSpaces(int numSpaces) {
...

This is a special return type that indicates that no value
is returned.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 104

Flow of Control with Methods That Return a Value

• The flow of control jumps to a method until it returns.

• The flow jumps back, and the returned value replaces the call.

• Example:

int num = 10;
int opp = opposite(num);
System.out.println(opp);

int num = 10;

int opp = opposite(num);

System.out.println(opp);

method instruction 1

method instruction 2
.
.
.

return statement

after the method returns

Flow of Control with Methods That Return a Value

• The flow of control jumps to a method until it returns.

• The flow jumps back, and the returned value replaces the call.

• Example:

int num = 10;
int opp = opposite(num);
System.out.println(opp);

int opp = -10;

method instruction 1

method instruction 2
.
.
.

return statementSystem.out.println(opp);

after the method returns

int num = 10;

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 105

Returning vs. Printing

• Instead of returning a value, we could write a method
that prints the value:

public static void printOpposite(int number) {
System.out.println(number * -1);

}

• However, a method that returns a value is typically
more useful.

• With such a method, you can still print the value by printing
what the method returns:

System.out.println(opposite(num));

• the return value replaces the method call and is printed

• In addition, you can do other things besides printing:

int penalty = opposite(num);

Practice: Computing the Volume of a Cone

• volume of a cone = base * height
3

• Let's write a method named coneVol for computing it.

• parameters and their types?

• return type?

• method definition:

public static ________ coneVol(___________________________) {

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 106

The Math Class

• Java's built-in Math class contains static methods for
mathematical operations.

• These methods return the result of applying the operation
to the parameters.

• Examples:

round(double value) – returns the result of rounding
value to the nearest integer

abs(double value) – returns the absolute value of value

pow(double base, double expon) – returns the result
of raising base to the expon power

sqrt(double value) – returns the square root of value

• For other examples, use the Java API on the Resources page.

The Math Class (cont.)

• To use a static method defined in another class,
we need to use the name of the class when we call it.

• We use what's known as dot notation.

• Syntax:

ClassName.methodName(param1, param2, …)

• Example:

double maxVal = Math.pow(2, numBits - 1) – 1;

class
name

method
name

actual
parameters

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 107

*** Common Mistake ***

• Consider this alternative opposite method:

public static int opposite(int number) {
number = number * -1;
return number;

}

• What's wrong with the following code that uses it?

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
opposite(number);
System.out.print("opposite = ");
System.out.println(number);

}

Keeping Track of Variables

• Consider again the alternative opposite method:

public static int opposite(int number) {
number = number * -1;
return number;

}

• Here's some code that uses it correctly:

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
...

}

• There are two different variables named number.
How does the runtime system distinguish between them?

• More generally, how does it keep track of variables?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 108

Keeping Track of Variables (cont.)

• When you make a method call, the Java runtime sets aside
a block of memory known as the frame of that method call.

• The frame is used to store:

• the formal parameters of the method

• any local variables – variables declared within the method

• A given frame can only be accessed by statements that are
part of the corresponding method call.

note: we're ignoring main's parameter for nownumber otherNumber

main

• When a method (method1) calls another method (method2),
the frame of method1 is set aside temporarily.

• method1's frame is "covered up" by the frame of method2

• example: after main calls opposite, we get:

main

maxOfThree

a b c max

• When the runtime system encounters a variable, it uses
the one from the current frame (the one on top).

• When a method returns, its frame is removed, which
"uncovers" the frame of the method that called it.

Keeping Track of Variables (cont.)

number otherNumber

number

main

opposite

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 109

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

main
• A frame is created

for the main method.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

10

number otherNumber

main

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 110

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(number);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

10

number otherNumber

main

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

main

opposite • A frame is created
for the opposite method,
and that frame "covers
up" the frame for main.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 111

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

10

main

opposite • The actual parameter
is passed in and is
assigned to the formal
parameter.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = number * -1;
return number;

}
}

number otherNumber

number

10

main

opposite

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 112

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return number;

}
}

number otherNumber

number

-10

main

opposite

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10

number otherNumber

main
• opposite returns,

which removes its frame.

• The variable number
in main's frame hasn't
been changed!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 113

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = opposite(10);
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10

number otherNumber

main
• The returned value

replaces the
method call.

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10 -10

number otherNumber

main

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 114

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(otherNumber);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

10 -10

number otherNumber

main

Example: Tracing Through a Program

public class OppositeFinder {
public static void main(String[] args) {

int number = 10;
int otherNumber = -10;
System.out.print("opposite = ");
System.out.println(-10);

}

public static int opposite(int number) {
number = -10;
return -10;

}
}

• main returns, which
removes its frame.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 115

Practice

• What is the output of the following program?

public class MethodPractice {
public static int triple(int x) {

x = x * 3;
return x;

}

public static void main(String[] args) {
int y = 2;
y = triple(y);
System.out.println(y);
triple(y);
System.out.println(y);

}
}

More Practice

public class Mystery {
public static int foo(int x, int y) {

y = y + 1;
x = x + y;
System.out.println(x + " " + y);
return x;

}

public static void main(String[] args) {
int x = 2;
int y = 0;

y = foo(y, x);
System.out.println(x + " " + y);

foo(x, x);
System.out.println(x + " " + y);

System.out.println(foo(x, y));
System.out.println(x + " " + y);

}
}

foo
x | y

main
x | y

output

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 116

From Unstructured to Structured
public class TwoTriangles {

public static void main(String[] args) {
char ch = '*'; // character used in printing
int smallBase = 5; // base length of smaller triangle

// Print the small triangle.
for (int line = 1; line <= smallBase; line++) {

for (int i = 0; i < line; i++) {
System.out.print(ch);

}
System.out.println();

}

// Print the large triangle.
for (int line = 1; line <= 2 * smallBase; line++) {

for (int i = 0; i < line; i++) {
System.out.print(ch);

}
System.out.println();

}
}

}

From Unstructured to Structured (cont.)

public class TwoTriangles {
public static void main(String[] args) {

char ch = '*'; // character used in printing
int smallBase = 5; // base length of smaller triangle

// Print the small triangle.

printTriangle(_________________________________);

// Print the large triangle.

printTriangle(_________________________________);
}

public static void printTriangle(_______________________) {

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 117

Using Objects from Existing Classes

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 3, Part 2

Combining Data and Operations

• The data types that we've seen thus far are referred to as
primitive data types.
• int, double, char

• several others

• Java allows us to use another kind of data known as an object.

• An object groups together:

• one or more data values (the object's fields)

• a set of operations (the object's methods)

• Objects in a program are often used to model
real-world objects.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 118

Combining Data and Operations (cont.)

• Example: an Address object

• possible fields: street, city, state, zip

• possible operations: get the city, change the city,
check if two addresses are equal

• Here are two ways to visualize an Address object:

street "111 Cummington St."

city "Boston"

state "MA"

zip "02215"

street "111 Cummington St."

city "Boston"

state "MA"

zip "02215"

getCity()
changeCity()
…

fields

methods

Classes as Blueprints

• We've been using classes as containers for our programs.

• A class can also serve as a blueprint – as the definition of a
new type of object.

• The objects of a given class are built according to its blueprint.

• Another analogy:

• class = cookie cutter
objects = cookies

• The objects of a class are also referred to as instances
of the class.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 119

Class vs. Object

• The Address class is a blueprint:

• Address objects are built according to that blueprint:

public class Address {
// definitions of the fields
...

// definitions of the methods
...

}

"111 Cummington St."street "111 Cummington St."street

"Boston"city "Boston"city

"MA"state "MA"state

"02215"zip "02215"zip

"240 West 44th Street"street "240 West 44th Street"street

"New York"city "New York"city

"NY"state "NY"state

"10036"zip "10036"zip

"1600 Pennsylvania Ave."street "1600 Pennsylvania Ave."street

"Washington"city "Washington"city

"DC"state "DC"state

"20500"zip "20500"zip

Using Objects from Existing Classes

• Later in the course, you'll learn how to create your own
classes that act as blueprints for objects.

• For now, we'll focus on learning how to use objects from
existing classes.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 120

String Objects

• In Java, a string (like "Hello, world!") is actually
represented using an object.

• data values: the characters in the string

• operations: get the length of the string, get a substring, etc.

• The String class defines this type of object:

• Individual String objects are instances of the String class:

public class String {
// definitions of the fields
...

// definitions of the methods
...

}

Perry Hello object

Variables for Objects

• When we use a variable to represent an object,
the type of the variable is the name of the object's class.

• Here's a declaration of a variable for a String object:

String name;

• we capitalize String, because it's a class name

type
(the class name)

variable name

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 121

Creating String Objects

• One way to create a String object is to specify a string literal:

String name = "Perry Sullivan";

• We create a new String from existing Strings when we
use the + operator to perform concatenation:

String firstName = "Perry";
String lastName = "Sullivan";
String fullName = firstName + " " + lastName;

• Recall that we can concatenate a String with other types
of values:

String msg = "Perry is " + 6;

// msg now represents "Perry is 6"

Using an Object's Methods

• An object's methods are different from the static methods
that we've seen thus far.

• they're called non-static or instance methods

• An object's methods belong to the object.
They specify the operations that the object can perform.

• To use a non-static method, we have to specify the object
to which the method belongs.

• use dot notation, preceding the method name
with the object's variable:

String firstName = "Perry";
int len = firstName.length();

• Using an object's method is like sending a message
to the object, asking it to perform that operation.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 122

The API of a Class

• The methods defined within a class are known as the API
of that class.

• API = application programming interface

• We can consult the API of an existing class to determine
which operations are supported.

• The API of all classes that come with Java is available here:
https://docs.oracle.com/javase/8/docs/api/

• there's a link on the resources page of the course website

Consulting the Java API

select
the
package
name
(optional)

String

is in
java.lang

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 123

Consulting the Java API

select
the
class
name

Consulting the Java API (cont.)

• Scroll down to see a summary of the available methods:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 124

Consulting the Java API (cont.)

• Clicking on a method name gives you more information:

• From the header, we can determine:

• the return type: int

• the parameters we need to supply:
the empty () indicates that length has no parameters

behavior

method header

Numbering the Characters in a String

• The characters are numbered from left to right, starting from 0.

0 1 2 3 4

Perry

• The position of a character in a string is known as its index.

• 'P' has an index of 0 in "Perry"

• 'y' has an index of 4

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 125

substring Method

String substring(int beginIndex, int endIndex)

• return type: ?

• parameters: ?

• behavior: returns the substring that:

• begins at beginIndex

• ends at endIndex – 1

substring Method (cont.)

• To extract a substring of length N, you can just figure out
beginIndex and do:

substring(beginIndex, beginIndex + N)

• example: consider again this string:

String name = "Perry Sullivan";

To extract a substring containing the first 5 characters,
we can do this:

String first = name.substring(0, 5);

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 126

Review: Calling a Method

• Consider this code fragment:

String name = "Perry Sullivan";
int start = 6;
String last = name.substring(start, start + 8);

• Steps for executing the method call:

1. the actual parameters are evaluated to give:
String last = name.substring(6, 14);

2. a frame is created for the method, and the
actual parameters are assigned to the formal parameters

3. flow of control jumps to the method, which creates and
returns the substring "Sullivan"

4. flow of control jumps back, and the returned value
replaces the method call:
String last = "Sullivan";

String s = "Strings have methods inside them!";
int len = s.length();
__________________ // get the last character in s

How should we fill in the blank?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 127

charAt Method

• The charAt() method that we use for indexing returns a
char, not a String.

• We have to be careful when we use its return value!

• example: what does this print?
String name = "Perry Sullivan";
System.out.println(name.charAt(0) +

name.charAt(6));

charAt Method

• Here's how we can fix this:
String name = "Perry Sullivan";
System.out.println(name.charAt(0) + "" +
name.charAt(6));

System.out.println('P' + "" +
'S');

System.out.println("PS");

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 128

Another String Method

String toUpperCase()

returns a new String in which all of the letters in the
original String are converted to upper-case letters

• Example:

String warning = "Start the problem set ASAP!";
System.out.println(warning.toUpperCase());

System.out.println("START THE PROBLEM SET ASAP!");

• toUpperCase() creates and returns a new String.
It does not change the original String.

• In fact, it's never possible to change an existing String object.

• We say that Strings are immutable objects.

indexOf Method

int indexOf(char ch)

• return type: int

• parameter list: (char ch)

• returns:

• the index of the first occurrence of ch in the string

• -1 if the ch does not appear in the string

• examples:
String name = "Perry Sullivan";
System.out.println(name.indexOf('r'));
System.out.println(name.indexOf('X'));

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 129

The Signature of a Method

• The signature of a method consists of:

• its name

• the number and types of its parameters

public String substring(int beginIndex, int endIndex)

• A class cannot include two methods with the same signature.

the signature

Two Methods with the Same Name

• There are actually two String methods named substring:

String substring(int beginIndex, int endIndex)

String substring(int beginIndex)

• returns the substring that begins at beginIndex and
continues to the end of the string

• Do these two methods have the same signature?

• Giving two methods the same name is known as
method overloading.

• When you call an overloaded method, the compiler uses
the number and types of the actual parameters to figure out
which version to use.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 130

Console Input Using a Scanner Object

• We’ve been printing text in the console window.

• You can also ask the user to enter a value in that window.

• known as console input

• To do so, we use a type of object known as a Scanner.

• recall PS 2

Packages

• Java groups related classes into packages.

• Many classes are part of the java.lang package.

• examples: String, Math

• we don't need to tell the compiler where to find
these classes

• If a class is in another package, we need to use an
import statement so that the compiler will be able to find it.

• put it before the definition of the class

• The Scanner class is in the java.util package, so we do this:

import java.util.*;

public class MyProgram {
...

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 131

• String objects are different from other objects, because
we're able to create them using literals.

• To create an object, we typically use a special method
known as a constructor.

• Syntax:

variable = new ClassName(parameters);
or

type variable = new ClassName(parameters);

• To create a Scanner object for console input:

Scanner console = new Scanner(System.in);

the parameter tells the constructor that we want the Scanner
to read from the standard input (i.e., the keyboard)

Creating an Object

Scanner Methods: A Partial List

• String next()

• read in a single "word" and return it

• int nextInt()

• read in an integer and return it

• double nextDouble()

• read in a floating-point value and return it

• String nextLine()

• read in a "line" of input (could be multiple words)
and return it

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 132

Example of Using a Scanner Object

• To read an integer from the user:

Scanner console = new Scanner(System.in);
int numGrades = console.nextInt();

• The second line causes the program to pause until the user
types in an integer followed by the [ENTER] key.

• If the user only hits [ENTER], it will continue to pause.

• If the user enters an integer, it is returned and assigned
to numGrades.

• If the user enters a non-integer, an exception is thrown
and the program crashes.

Example Program: GradeCalculator

import java.util.*;

public class GradeCalculator {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("Points earned: ");
int points = console.nextInt();
System.out.print("Possible points: ");
int possiblePoints = console.nextInt();

double grade = points/(double)possiblePoints;
grade = grade * 100.0;

System.out.println("grade is " + grade);
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 133

Important Note About Console Input

• When writing an interactive program that involves user input
in methods other than main, you should:

• create a single Scanner object on the first line of the main

method

• pass that object into any other method that needs it

• This allows you to avoid creating multiple objects that all
do the same thing.

• It also facilitates our grading, because it allows us to provide
a series of inputs using a file instead of the keyboard.

Important Note About Console Input (cont.)

• Example:

public class MyProgram {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
String str1 = getString(console);
String str2 = getString(console);
System.out.println(str1 + " " + str2);

}

public static String getString(Scanner console) {
System.out.print("Enter a string: ");
String str = console.next();
return str;

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 134

What's Wrong with the Following?

import java.util.*;

public class LengthConverter {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
int cm = (int)(getInches(console) * 2.54);
System.out.println(getInches(console)
+ " inches = " + cm + " cm");

}

public static int getInches(Scanner console) {
System.out.print("Enter a length in inches: ");
int inches = console.nextInt();
return inches;

}
}

Exercise: Analyzing a Name: First Version

public class NameAnalyzer {
public static void main(String[] args) {

String name = "Perry Sullivan";
System.out.println("full name = " + name);

int length = name.length();
System.out.println("length = " + length);

String first = name.substring(0, 5);
System.out.println("first name = " + first);

String last = name.substring(6);
System.out.println("last name = " + last);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 135

Making the Program More General

• Would the code work if we used a different name?

import java.util.*;

public class NameAnalyzer {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
String name = console.nextLine();
System.out.println("full name = " + name);

int length = name.length();
System.out.println("length = " + length);

String first = name.substring(0, 5);
System.out.println("first name = " + first);

String last = name.substring(6);
System.out.println("last name = " + last);

}
}

Breaking Up a Name

• Given a string of the form "firstName lastName", how can
we get the first and last names, without knowing how long it is?

• Pseudocode for what we need to do:

• What String methods can we use? Consult the API!

• Code:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 136

Static Methods for Breaking Up a Name

• How could we rewrite our name analyzer to use
separate methods for extracting the first and last names?

public static _________ firstName(_______________) {

}

public static _________ lastName(_______________) {

}

Using the Static Methods

• Given the methods from the previous slide, what would the
main method now look like?

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
String name = console.nextLine();
System.out.println("full name = " + name);

int length = name.length();
System.out.println("length = " + length);

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 137

Processing a String One Character at a Time

• Write a method for printing the name vertically, one char per line.

import java.util.*;

public class NameAnalyzer {
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
String name = console.nextLine();
System.out.println("full name = " + name);
...
printVertical(name);

}

public static _____ printVertical(_______________){

for (int i = 0; i < _______________; i++) {

}
}

}

Scanner Objects and Tokens

• Most Scanner methods read one token at a time.

• Tokens are separated by whitespace (spaces, tabs, newlines).

• example: if the user enters the line

wow, I slept for 9 hours!\n

there are six tokens:

• wow,

• I

• slept

• for

• 9

• hours!

newline character,
which you get when
you hit [ENTER]

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 138

Scanner Objects and Tokens (cont.)

• Consider the following lines of code:

System.out.print("Enter the length and width: ");
int length = console.nextInt();
int width = console.nextInt();

• Because the nextInt() method reads one token at a time,
the user can either:

• enter the two numbers on the same line, separated by
one or more whitespace characters
Enter the length and width: 30 15

• enter the two numbers on different lines
Enter the length and width: 30
15

nextLine Method

• The nextLine() method does not just read a single token.

• Using nextLine can lead to unexpected behavior,
for reasons that we'll discuss later on.

• Avoid it for now!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 139

Additional Terminology

• To avoid having too many new terms at once, I've limited
the terminology introduced in these notes.

• Here are some additional terms related to classes, objects,
and methods:

• invoking a method = calling a method

• method invocation = method call

• the called object = the object used to make a method call

• instantiate an object = create an object

• members of a class = the fields and methods of a class

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 140

Conditional Execution

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 3, Part 3

Review: Simple Conditional Execution in Java

if (condition) {

true block
} else {

false block
}

• If the condition is true:

• the statement(s) in the true block are executed

• the statement(s) in the false block (if any) are skipped

• If the condition is false:

• the statement(s) in the false block (if any) are executed

• the statement(s) in the true block are skipped

if (condition) {

true block
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 141

Example: Analyzing a Number

Scanner console = new Scanner(System.in);
System.out.print("Enter an integer: ");
int num = console.nextInt();

if (num % 2 == 0) {
System.out.println(num + " is even.");

} else {
System.out.println(num + " is odd.");

}

Flowchart for an if-else Statement

next statement

true false
condition

false blocktrue block

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 142

Common Mistake

• You should not put a semi-colon after an if-statement header:

if (num % 2 == 0); {
System.out.println(…);
...

}

• The semi-colon ends the if statement.

• thus, it has an empty true block

• The println and other statements are independent of
the if statement, and always execute.

Choosing at Most One of Several Options

• Consider this code:

if (num < 0) {
System.out.println("The number is negative.");

}
if (num > 0) {

System.out.println("The number is positive.");
}
if (num == 0) {

System.out.println("The number is zero.");
}

• All three conditions are evaluated, but at most one of them
can be true (in this case, exactly one).

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 143

Choosing at Most One of Several Options (cont.)

• We can do this instead:

if (num < 0) {
System.out.println("The number is negative.");

}
else if (num > 0) {

System.out.println("The number is positive.");
}
else if (num == 0) {

System.out.println("The number is zero.");
}

• If the first condition is true, it will skip the second and third.

• If the first condition is false, it will evaluate the second, and
if the second condition is true, it will skip the third.

• If the second condition is false, it will evaluate the third, etc.

Choosing at Most One of Several Options (cont.)

• We can also make things more compact as follows:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else if (num == 0) {

System.out.println("The number is zero.");
}

• This emphasizes that the entire thing is one compound
statement.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 144

if-else if Statements

• Syntax:

if (condition1) {

true block for condition1

} else if (condition2) {

true block for condition2
}

…

} else {

false block for all of the conditions
}

• The conditions are evaluated in order.
The true block of the first true condition is executed.
All of the remaining conditions and their blocks are skipped.

• If no condition is true, the false block (if any) is executed.

Flowchart for an if-else if Statement

false block

false

true
condition1 true block 1

false

true
condition2 true block 2

...

false

next statement

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 145

Choosing Exactly One Option

• Consider again this code fragment:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else if (num == 0) {

System.out.println("The number is zero.");
}

• One of the conditions must be true, so we can omit the last one:

if (num < 0) {
System.out.println("The number is negative.");

} else if (num > 0) {

System.out.println("The number is positive.");
} else {

System.out.println("The number is zero.");
}

Types of Conditional Execution

• If it want to execute any number of several conditional blocks,
use sequential if statements:
if (num < 0) {

System.out.println("The number is negative.");
}
if (num % 2 == 0) {

System.out.println("The number is even.");
}

• If you want to execute at most one (i.e., 0 or 1) of several
blocks, use an if-else if statement ending in else if:
if (num < 0) {

System.out.println("The number is negative.");
} else if (num > 0) {

System.out.println("The number is positive.");
}

• If you want to execute exactly one of several blocks, use an
if-else if ending in just else (see bottom of last slide).

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 146

Find the Logic Error

Scanner console = new Scanner(System.in);

System.out.print("Enter the student's score: ");
int score = console.nextInt();

String grade;
if (score >= 90) {

grade = "A";
}
if (score >= 80) {

grade = "B";
}
if (score >= 70) {

grade = "C";
}
if (score >= 60) {

grade = "D";
}
if (score < 60) {

grade = "F";
}

Review: Variable Scope

• Recall: the scope of a variable is the portion of a program
in which the variable can be used.

• By default, the scope of a variable:

• begins at the point at which it is declared

• ends at the end of the innermost block that encloses the
declaration

• Because of these rules, a variable cannot be used outside
of the block in which it is declared.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 147

Variable Scope and if-else statements

• The following program will produce compile-time errors:

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("enter a positive int: ");
int num = console.nextInt();
if (num < 0) {

System.out.println("number is negative;"
+ " using its absolute value");

double sqrt = Math.sqrt(num * -1);
} else {

sqrt = Math.sqrt(num);
}
System.out.println("square root = " + sqrt);

}

• Why?

Variable Scope and if-else statements (cont.)

• To eliminate the errors, declare the variable outside of
the true block:

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("enter a positive int: ");
int num = console.nextInt();
double sqrt;
if (num < 0) {

System.out.println("number is negative;"
+ " using its absolute value");

sqrt = Math.sqrt(num * -1);
} else {

sqrt = Math.sqrt(num);
}
System.out.println("square root = " + sqrt);

}

• What is the scope of sqrt now?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 148

Review: Loop Patterns for n Repetitions
• Thus far, we've mainly used for loops to repeat something

a definite number of times.

• We've seen two different patterns for this:

• pattern 1:

for (int i = 0; i < n; i++) {

statements to repeat
}

• pattern 2:

for (int i = 1; i <= n; i++) {

statements to repeat
}

Another Loop Pattern: Cumulative Sum

• We can also use a for loop to add up a set of numbers.

• Basic pattern (using pseudocode):

sum = 0
for (all of the numbers that we want to sum) {

num = the next number
sum = sum + num

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 149

Example of Using a Cumulative Sum
public class GradeAverager {

public static void main(String[] args) {
Scanner console = new Scanner(System.in);
System.out.print("number of grades? ");
int numGrades = console.nextInt();

if (numGrades <= 0) {
System.out.println("nothing to average");

} else {
int sum = 0;
for (int i = 1; i <= numGrades; i++) {

System.out.print("grade #" + i + ": ");
int grade = console.nextInt();
sum = sum + grade;

}

System.out.println("The average is " +
(double)sum / numGrades);

}
}

}

• Note the use of an if-else statement to handle invalid
user inputs.

Tracing Through a Cumulative Sum

• Let's trace through this code.
int sum = 0;
for (int i = 1; i <= numGrades; i++) {

System.out.print("grade #" + i + ": ");
int grade = console.nextInt();
sum = sum + grade;

}

assuming that the user enters these grades: 80, 90, 84.

numGrades = 3

i i <= numGrades grade sum

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 150

Conditional Execution and Return Values

• With conditional execution, it's possible to write a method
with more than one return statement.

• example:
public static int min(int a, int b) {

if (a < b) {
return a;

} else {
return b;

}
}

• Only one of the return statements is executed.

• As soon as you reach a return statement, the method's
execution stops and the specified value is returned.

• the rest of the method is not executed

Conditional Execution and Return Values (cont.)

• Instead of writing the method this way:

public static int min(int a, int b) {
if (a < b) {

return a;
} else {

return b;
}

}

we could instead write it like this, without the else:

public static int min(int a, int b) {
if (a < b) {

return a;
}
return b;

}

• Why is this equivalent?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 151

Conditional Execution and Return Values (cont.)

• Consider this method, which has a compile-time error:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
} else if (a == b) {

return 0;
}

}

• Because all of the return statements are connected
to conditions, the compiler worries that no value
will be returned.

Conditional Execution and Return Values (cont.)

• Here's one way to fix it:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
} else {

return 0;
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 152

Conditional Execution and Return Values (cont.)

• Here's another way:

public static int compare(int a, int b) {
if (a < b) {

return -1;
} else if (a > b) {

return 1;
}

return 0;
}

• Both fixes allow the compiler to know for certain that
a value will always be returned.

Returning From a void Method

public static void repeat(String msg, int n) {
if (n <= 0) { // special cases

return;
}

for (int i = 0; i < n; i++) {
System.out.println(msg);

}
}

• Note that this method has a return type of void.

• it doesn't return a value.

• However, it still has a return statement.

• used to break out of the method

• note that there's nothing between the return and the ;

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 153

Testing for Equivalent Primitive Values

• The == and != operators are used when comparing primitives.

• int, double, char, etc.

• Example:
Scanner console = new Scanner(System.in);

...
System.out.print("Do you have another (y/n)? ");
char choice = console.next().charAt(0);
if (choice == 'y') { // this works just fine

processItem();
} else if (choice == 'n') {

return;
} else {

System.out.println("invalid input");
}

Testing for Equivalent Objects

• The == and != operators do not typically work
when comparing objects. (We'll see why this is later.)

• Example:
Scanner console = new Scanner(System.in);
System.out.print("regular or diet? ");
String choice = console.next();
if (choice == "regular") { // doesn't work

processRegular();
} else {

...
}

• choice == "regular" compiles, but it evaluates to false,
even when the user does enter "regular"!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 154

Testing for Equivalent Objects (cont.)

• We use a special method called the equals method
to test if two objects are equivalent.

• example:
Scanner console = new Scanner(System.in);
System.out.print("regular or diet? ");
String choice = console.next();
if (choice.equals("regular")) {

processRegular();
} else {

...
}

• choice.equals("regular") compares the string represented
by the variable choice with the string "regular"

• returns true when they are equivalent

• returns false when they are not

equalsIgnoreCase()

• We often want to compare two strings without paying attention
to the case of the letters.

• example: we want to treat as equivalent:
"regular"

"Regular"
"REGULAR"

etc.

• The String class has a method called equalsIgnoreCase that
can be used for this purpose:

if (choice.equalsIgnoreCase("regular")) {

...

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 155

Example Problem: Ticket Sales

• Different prices for balcony seats and orchestra seats

• Here are the rules:

• persons younger than 25 receive discounted prices:

• $20 for balcony seats

• $35 for orchestra seats

• everyone else pays the regular prices:

• $30 for balcony seats

• $50 for orchestra seats

• Assume only valid inputs.

Ticket Sales Program: main method

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

if (age < 25) {
// handle people younger than 25
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

// handle people 25 and older
...

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 156

Ticket Sales Program: main method (cont.)

...

} else {
// handle people 25 and older
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

Where Is the Code Duplication?...

if (age < 25) {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 157

Factoring Out Code Common to Multiple Cases

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();

if (age < 25) {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

} else {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

}

System.out.println("The price is $" + price);

What Other Change Is Needed?

Scanner console = new Scanner(System.in);
System.out.print("Enter your age: ");
int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();

if (age < 25) {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

} else {
int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

}

System.out.println("The price is $" + price);

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 158

Now Let's Make It Structured

public static void main(String[] args) {
...

int age = console.nextInt();

System.out.print("orchestra or balcony? ");
String choice = console.next();
int price;

if (age < 25) {

__;
} else {

…
}

System.out.println("The price is $" + price);
}
public static ________ discountPrice(__________________) {

}

Expanded Ticket Sales Problem

• One additional case:

• persons younger than 13 cannot buy a ticket

• persons whose age is 13-24 receive discounted prices:

• $20 for balcony seats

• $35 for orchestra seats

• everyone else pays the regular prices:

• $30 for balcony seats

• $50 for orchestra seats

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 159

Here's the Unfactored Version...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else if (age < 25) {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 50;
} else {

price = 30;
}

System.out.println("The price is $" + price);
}

We now have code
common to the
2nd and 3rd cases,
but not the 1st.

Group the Second and Third Cases Together
...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else {
if (age < 25) {

System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (choice.equalsIgnoreCase("orchestra")) {

price = 35;
} else {

price = 20;
}

System.out.println("The price is $" + price);
} else {

System.out.print("orchestra or balcony? ");
String choice = console.next();

...

System.out.println("The price is $" + price);
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 160

Then Factor Out the Common Code
...

if (age < 13) {
System.out.println("You cannot buy a ticket.");

} else {
System.out.print("orchestra or balcony? ");
String choice = console.next();

int price;
if (age < 25) {

if (choice.equalsIgnoreCase("orchestra")) {
price = 35;

} else {
price = 20;

}
} else {

if (choice.equalsIgnoreCase("orchestra")) {
price = 50;

} else {
price = 30;

}
}

System.out.println("The price is $" + price);
}

Case Study: Coffee Shop Price Calculator

• Relevant info:

• brewed coffee prices by size:

• tiny: $1.60

• medio: $1.80

• gigundo: $2.00

• latte prices by size:

• tiny: $2.80

• medio: $3.20

• gigundo: $3.60

plus, add 50 cents for a latte with flavored syrup

• sales tax:

• students: no tax

• non-students: 6.25% tax

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 161

Case Study: Coffee Shop Price Calculator (cont.)

• Developing a solution:

1. Begin with an unstructured solution.

• everything in the main method

• use if-else-if statement(s) to handle the various cases

2. Next, factor out code that is common to multiple cases.

• put it either before or after the appropriate
if-else-if statement

3. Finally, create a fully structured solution.

• use procedural decomposition to capture
logical pieces of the solution

Case Study: Coffee Shop Price Calculator (cont.)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 162

Optional: Comparing Floating-Point Values

• Because the floating-point types have limited precision, it's
possible to end up with roundoff errors.

• Example:

double sum = 0.1 + 0.1 + 0.1 + 0.1 + 0.1;
sum = sum + 0.1 + 0.1 + 0.1 + 0.1 + 0.1;
System.out.println(sum);
// get 0.9999999999999999!

• Thus when trying to determine if two floating-point values are
equal, we usually do not use the == operator.

• Instead, we test if the difference between the two values is
less than some small threshold value:

if (Math.abs(sum – 1.0) < 0.0000001) {
System.out.println(sum + " == 1.0");

}

threshold

Optional: Another Cumulative Computation

• The same pattern can be used for other types of computations.

• Example: counting the occurrences of a character in a string.

• Let's write a static method called numOccur that does this.

• examples:

numOccur('l', "hello") should return 2

numOccur('s', "Mississippi") should return 4

public static ___ numOccur(_____________________) {

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 163

Indefinite Loops
and Boolean Expressions

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 3, Part 4

Review: Definite Loops

• The loops that we've seen thus far have been definite loops.

• we know exactly how many iterations will be performed
before the loop even begins

• In an indefinite loop, the number of iterations is either:

• not as obvious

• impossible to determine before the loop begins

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 164

Sample Problem: Finding Multiples

• Problem: Print all multiples of a number (call it num) that are
less than 100.

• output for num = 9:
9 18 27 36 45 54 63 72 81 90 99

• Pseudocode for one possible algorithm:

mult = num
repeat as long as mult < 100:

print mult + " "
mult = mult + num

print a newline

Sample Problem: Finding Multiples (cont.)

• Pseudocode:

mult = num
repeat as long as mult < 100:

print mult + " "
mult = mult + num

print a newline

• Here's how we would write this in Java:

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num;

}
System.out.println();

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 165

while Loops

• In general, a while loop has the form

while (test) {

one or more statements
}

• As with for loops, the statements in the block of a while loop
are known as the body of the loop.

Evaluating a while Loop

Steps:

1. evaluate the test

2. if it's false, skip the
statements in the body

3. if it's true, execute the
statements in the body,
and go back to step 1

next statement

true

false
condition

body of the loop

test

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 166

Tracing a while Loop

• Let's trace through our code when num has the value 15:

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num;

}

output thus far mult

before entering the loop 15

after the first iteration 15 30

after the second iteration 15 30 45

after the third iteration 15 30 45 60

after the fourth iteration 15 30 45 60 75

after the fifth iteration 15 30 45 60 75 90

after the sixth iteration 15 30 45 60 75 90 105

and now (mult < 100) is false, so we exit the loop

Comparing if and while

true block

next statement

true

false
condition

next statement

true

false
condition

while block

if statement while statement

• The true block of an if statement is evaluated at most once.

• The body of a while statement can be evaluated multiple times,
provided the test remains true.

test test

while body

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 167

Typical while Loop Structure

• Typical structure:

initialization statement(s)
while (test) {

other statements
update statement(s)

}

• In our example:

int mult = num; // initialization
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num; // update

}

Comparing for and while loops

• while loop (typical structure):

initialization
while (test) {

other statements
update

}

• for loop:

for (initialization; test; update) {
one or more statements

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 168

Infinite Loops

• Let's say that we change the condition for our while loop:

int mult = num;
while (mult != 100) { // replaced < with !=

System.out.print(mult + " ");
mult = mult + num;

}

• When num is 15, the condition will always be true.

• why?

• an infinite loop – the program will hang (or repeatedly output
something), and needs to be stopped manually

• what class of error is this (syntax or logic)?

• It's generally better to use <, <=, >, >= in a loop condition,
rather than == or !=

Infinite Loops (cont.)

• Another common source of infinite loops is forgetting the
update statement:

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
// update should go here

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 169

A Need for Error-Checking

• Let's return to our original version:

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num;

}

• This could still end up in an infinite loop! How?

Using a Loop When Error-Checking

• We need to check that the user enters a positive integer.

• If the number is <= 0, ask the user to try again.

• Here's one way of doing it using a while loop:

Scanner console = new Scanner(System.in);
System.out.print("Enter a positive integer: ");
int num = console.nextInt();
while (num <= 0) {

System.out.print("Enter a positive integer: ");
num = console.nextInt();

}

• Note that we end up duplicating code.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 170

Error-Checking Using a do-while Loop

• Java has a second type of loop statement that allows us to
eliminate the duplicated code in this case:

Scanner console = new Scanner(System.in);
int num;
do {

System.out.print("Enter a positive integer: ");
num = console.nextInt();

} while (num <= 0);

• The code in the body of a do-while loop is always executed
at least once.

do-while Loops

• In general, a do-while statement has the form
do {

one or more statements

} while (test);

• Note the need for a semi-colon after the condition.

• We do not need a semi-colon after the condition in a
while loop.

• beware of using one – it can actually create an infinite loop!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 171

Evaluating a do-while Loop

Steps:

1. execute the statements
in the body

2. evaluate the test

3. if it's true, go back to
step 1

(if it's false, continue to the
next statement)

next statement

true

false

while block

condition

body of the loop

test

Formulating Loop Conditions

• We often need to repeat actions until a condition is met.

• example: keep reading a value until the value is positive

• such conditions are termination conditions –
they indicate when the repetition should stop

• However, loops in Java repeat actions while a condition is met.

• they use continuation conditions

• As a result, you may need to convert a termination condition
into a continuation condition.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 172

Which Type of Loop Should You Use?

• Use a for loop when the number of repetitions is known in
advance – i.e., for a definite loop.

• Otherwise, use a while loop or do-while loop:

• use a while loop if the body of the loop may not be
executed at all

• i.e., if the condition may be false at the start of the loop

• use a do-while loop if:

• the body will always be executed at least once

• doing so will allow you to avoid duplicating code

Find the Error…

• Where is the syntax error below?

Scanner console = new Scanner(System.in);

do {
System.out.print("Enter a positive integer: ");
int num = console.nextInt();

} while (num <= 0);

System.out.println("\nThe multiples of " + num +
" less than 100 are:");

int mult = num;
while (mult < 100) {

System.out.print(mult + " ");
mult = mult + num;

}

System.out.println();

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 173

Practice with while loops

• What does the following loop output?

int a = 10;
while (a > 2) {

a = a – 2;
System.out.println(a * 2);

}

a > 2 a output

before loop
1st iteration
2nd iteration
3rd iteration
4th iteration

boolean Data Type

• A condition like mult < 100 has one of two values:
true or false

• In Java, these two values are represented using the
boolean data type.

• one of the primitive data types (like int, double, and char)

• true and false are its two literal values

• This type is named after the 19th-century
mathematician George Boole, who developed
the system of logic called boolean algebra.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 174

boolean Expressions

• We have seen a number of constructs that use a "test".

• loops

• if statements

• A more precise term for a "test" is a boolean expression.

• A boolean expression is any expression that evaluates to
true or false.

• examples: num > 0
false
firstChar == 'P'
score != 20

boolean Expressions (cont.)

• Recall this line from our ticket-price program:
if (choice.equals("orchestra")) …

• if we look at the String class in the Java API, we see
that the equals method has this header:

public boolean equals(...)

it returns either true or false

a boolean expression, because
it evaluates to true or false

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 175

Forming More Complex Conditions

• We often need to make a decision based on more than one
condition – or based on the opposite of a condition.

• examples in pseudocode:

if the number is even AND it is greater than 100…

if it is NOT the case that your grade is > 80…

• Java provides three logical operators for this purpose:

operator name example

&& and age >= 18 && age <= 35

|| or age < 3 || age > 65

! not !(grade > 80)

Truth Tables

• The logical operators operate on boolean expressions.

• let a and b represent two such expressions

• We can define the logical operators using truth tables.

truth table for && (and) truth table for || (or)

truth table for ! (not)

a b a && b

false false false

false true false

true false false

true true true

a b a || b

false false false

false true true

true false true

true true true

a !a

false true

true false

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 176

Truth Tables (cont.)

• Example: evaluate the following expression:
(20 >= 0) && (30 % 4 == 1)

• First, evaluate each of the operands:
(20 >= 0) && (30 % 4 == 1)

true && false

• Then, consult the appropriate row of the truth table:

• Thus, (20 >= 0) && (30 % 4 == 1) evaluates to false

a b a && b

false false false

false true false

true false false

true true true

Practice with Boolean Expressions

• Let's say that we wanted to express the following English
condition in Java:

"num is not equal to either 0 or 1"

• Which of the following boolean expression(s) would work?

a) num != 0 || 1

b) num != 0 || num != 1

c) !(num == 0 || num == 1)

• Is there a different boolean expression that would work here?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 177

boolean Variables

• We can declare variables of type boolean, and assign
the values of boolean expressions to them:

int num = 10;
boolean isPos = (num > 0);
boolean isDone = false;

• these statements give us the following picture in memory:

isPos true isDone false

• Using a boolean variable can make your code more readable:

if (value % 2 == 0) {
...

boolean isEven = (value % 2 == 0);
if (isEven == true) {

...

boolean Variables (cont.)

• Instead of doing this:

boolean isEven = (num % 2 == 0);
if (isEven == true) {

...

you could just do this:

boolean isEven = (num % 2 == 0);
if (isEven) {

...

The extra comparison isn't necessary!

• Similarly, instead of writing:

if (isEven == false) {
...

you could just write this:

if (!isEven) {
...

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 178

Input Using a Sentinel

• Example problem: averaging an arbitrary number of grades.

• Instead of having the user tell us the number of grades
in advance, we can let the user indicate that there are no more
grades by entering a special sentinal value.

• When we encounter the sentinel, we break out of the loop

• example interaction:
Enter grade (-1 to end): 10
Enter grade (-1 to end): 8
Enter grade (-1 to end): 9
Enter grade (-1 to end): 5
Enter grade (-1 to end): -1
The average is: 8.0

Input Using a Sentinel (cont.)

• Here's one way to do this:

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;

System.out.print("Enter grade (or -1 to quit): ");
int grade = console.nextInt();
while (grade != -1) {

total += grade;
numGrades++;
System.out.print("Enter grade (or -1 to quit): ");
grade = console.nextInt();

}

if (numGrades > 0) {
System.out.print("The average is ");
System.out.println((double)total/numGrades);

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 179

Input Using a Sentinel and a Boolean Flag

• Here's another way, using what is known as a boolean flag,
which is a variable that keeps track of some condition:

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;
boolean done = false;

while (!done) {
System.out.print("Enter grade (or -1 to quit): ");
int grade = console.nextInt();
if (grade == -1) {

done = true;
} else {

total += grade;
numGrades++;

}
}

if (numGrades > 0) {
...

Input Using a Sentinel and a break Statement

• Here's another way, using what is known as a break statement,
which "breaks out" of the loop:

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;

while (true) {
System.out.print("Enter grade (or -1 to quit): ");
int grade = console.nextInt();
if (grade == -1) {

break;
}
total += grade;
numGrades++;

}

// after the break statement, the flow of control
// resumes here...
if (numGrades > 0) {

...

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 180

Arrays

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 4, Part 1

Collections of Data

• Recall our program for averaging quiz grades:
public static void main(String[] args) {

Scanner console = new Scanner(System.in);
int total = 0;
int numGrades = 0;

while (true) {
System.out.print("Enter a grade (or -1 to quit): ");
int grade = console.nextInt();
if (grade == -1) {

break;
}
total += grade;
numGrades++;

}

if (numGrades > 0) {
...

}

• What if we wanted to store the individual grades?

• an example of a collection of data

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 181

Arrays

• An array is a collection of data values of the same type.

• In the same way that we think of a variable as a single box,
an array can be thought of as a sequence of boxes:

• Each box contains one of the data values in the collection

• referred to as the elements of the array

• Each element has a numeric index
• the first element has an index of 0,

the second element has an index of 1,
etc.

• example: the value 6 above has an index of 3

• like the index of a character in a String

7 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7 indices

elements

Declaring and Creating an Array

• We use a variable to represent the array as a whole.

• Example of declaring an array variable:

int[] grades;

• the [] indicates that it will represent an array

• the int indicates that the elements will be ints

• Declaring the array variable does not create the array.

• Example of creating an array:

grades = new int[8];

the length of the array –
i.e., the number of elements

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 182

Declaring and Creating an Array (cont.)

• We often declare and create an array in the same statement:

int[] grades = new int[8];

• General syntax:

type[] array = new type[length];

where

type is the type of the individual elements
array is the name of the variable used for the array
length is the number of elements in the array

The Length of an Array

• The length of an array is the number of elements in the array.

• The length of an array can be obtained as follows:

array.length

• example:
grades.length

• note: it is not a method

grades.length() won't work!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 183

Auto-Initialization

• When you create an array in this way:

int[] grades = new int[8];

the runtime system gives the elements default values:

• The value used depends on the type of the elements:

int 0
double 0.0
char '\0'
boolean false

objects null

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

Accessing an Array Element

• To access an array element, we use an expression of the form

array[index]

• Examples:

grades[0] accesses the first element
grades[1] accesses the second element
grades[5] accesses the sixth element

• Here's one way of setting up the array we showed earlier:

int[] grades = new int[8];
grades[0] = 7; grades[1] = 8; grades[2] = 9;
grades[3] = 6; grades[4] = 10; grades[5] = 7;
grades[6] = 9; grades[7] = 5;

7 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 184

Accessing an Array Element (cont.)

• Acceptable index values:

integers from 0 to array.length – 1

• If we specify an index outside that range, we'll get an
ArrayIndexOutOfBoundsException at runtime.

• example:

int[] grades = int[8];
grades[8] = 5;

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8
no such
element!

Accessing an Array Element (cont.)

• The index can be any integer expression.

• example:

int lastGrade = grades[grades.length – 1];

• We can operate on an array element in the same way that
we operate on any other variable of that type.

• example: applying a 10% late penalty to the grade
at index i

grades[i] = (int)(grades[i] * 0.9);

• example: adding 5 points of extra credit to the grade
at index i

grades[i] += 5;

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 185

Another Way to Create an Array

• If we know that we want an array to contain specific values,
we can specify them when create the array.

• Example: here's another way to create and initialize our
grades array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};

• The list of values is known as an initialization list.

• it can only be specified when the array is declared

• we don't use the new operator in this case

• we don't specify the length of the array – it is determined
from the number of values in the initialization list

• Other examples:

double[] heights = {65.2, 72.0, 70.6, 67.9};
boolean[] isPassing = {true, true, false, true};

Storing Grades Entered by the User

• We need to know how big to make the array.

• one way: ask the user for the maximum number of values
public static void main(String[] args) {

Scanner console = new Scanner(System.in);

System.out.print("How many grades? ");
int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

int total = 0;
int numGrades = 0;

while (numGrades < maxNumGrades) {
System.out.print("Enter a grade (or -1 to quit): ");
grades[numGrades] = console.nextInt();
if (grades[numGrades] == -1) {

break;
}
total += grades[numGrades];
numGrades++;

}
...

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 186

Processing the Values in an Array

• We often use a for loop to process the values in an array.

• Example: print out all of the grades

int[] grades = new int[maxNumGrades];
...
for (int i = 0; i < grades.length; i++) {

System.out.println("grade " + i + ": " + grades[i]);
}

• General pattern:

for (int i = 0; i < array.length; i++) {
do something with array[i];

}

• Processing array elements sequentially from first to last
is known as traversing the array.

• noun = traversal

Another Example of Traversing an Array

• Let's write code to find the highest quiz grade in the array:

int max = __________________;

for (_________; _________________; ______) {

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 187

Another Example of Traversing an Array (cont.)

• Let's trace through our code:
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

i grades[i] max
7

1 8 8
2 9 9
3 6 9
4 10 10
5 7 10
...

7 8 9 6 10 7 9 5grades array:

Review: What Is a Variable?

• We've seen that a variable is like a named "box" in memory
that can be used to store a value.

int count = 10; count 10

• If a variable represents a primitive-type value, the value is
stored in the variable itself, as shown above.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 188

Reference Variables

• If a variable represents an object, the object itself is
not stored inside the variable.

• Rather, the object is located somewhere else in memory, and
the variable holds the memory address of the object.

• we say that the variable stores a reference to the object

• such variables are called reference variables

Arrays and References

• An array is a type of object.

• Thus, an array variable is a reference variable.

• it stores a reference to the array

• Example:

int[] grades = new int[8];

might give the following picture:

• We usually use an arrow to represent a reference:

0 0 0 0 0 0 0 02000grades

memory location: 2000

0 0 0 0 0 0 0 0grades

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 189

Printing an Array

• What is the output of the following lines?
int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
System.out.println(grades);

• To print the contents of the array, we can use a for loop
as we showed earlier.

• We can also use the Arrays.toString() method,
which is part of Java's built in Arrays class.

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
System.out.println(Arrays.toString(grades));

• doing so produces the following output:
[7, 8, 9, 6, 10, 7, 9, 5]

• To use this method, we need to import the java.util package.

What is the output of the full program?
import java.util.*;

public class FunWithArrays {
public static void main(String[] args) {

int[] temps = {51, 50, 36, 29, 30};
int first = temps[0];
int numTemps = temps.length;
int last = temps[numTemps - 1];

temps[2] = 40;
temps[3] += 5;
System.out.println(temps[3]);
System.out.println(Arrays.toString(temps));

}
}

first

last

numTemps

temps

output:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 190

Copying References

• When we assign the value of one reference variable to
another, we copy the reference to the object.
We do not copy the object itself.

• Example involving objects:

String s1 = "hello, world";
String s2 = s1;

s2

s1
"hello, world"

Copying References (cont.)

• An example involving an array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = grades;

• Given the lines of code above, what will the lines below print?

other[2] = 4;
System.out.println(grades[2] + " " + other[2]);

other

grades 7 8 9 6 10 7 9 5

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 191

Changing the Internals vs. Changing a Variable

• When two variables hold a reference to the same array...

int[] list1 = {7, 8, 9};
int[] list2 = list1;

• ...if we change the internals of the array,
both variables will "see" the change:

list2[2] = 4;
System.out.println(Arrays.toString(list1));

list2

list1 7 8 9

list2

list1 7 8 4 output of println:

Changing the Internals vs. Changing a Variable (cont.)

• When two variables hold a reference to the same array...

int[] list1 = {7, 8, 9};
int[] list2 = list1;

• ...if we change one of the variables itself,
that does not change the other variable:

list2 = new int[3];
System.out.println(Arrays.toString(list1));

list2

list1 7 8 9

list2

list1 7 8 9

0 0 0

output of println:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 192

Null References

• To indicate that a reference variable doesn't yet refer to any
object, we can assign it a special value called null.

int[] grades = null;
String s = null;

grades null s null

• Attempting to use a null reference to access an object
produces a NullPointerException.

• "pointer" is another name for reference

• examples:
int[] grades = null;
String s = null;
grades[3] = 10; // NullPointerException!
char ch = s.charAt(5); // NullPointerException!

Copying an Array

• To actually create a copy of an array, we can:
• create a new array of the same length as the first
• traverse the arrays and copy the individual elements

• Example:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[grades.length];
for (int i = 0; i < grades.length; i++) {

other[i] = grades[i];
}

• What do the following lines print now?
other[2] = 4;
System.out.println(grades[2] + " " + other[2]);

other

grades 7 8 9 6 10 7 9 5

7 8 9 6 10 7 9 5

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 193

Programming Style Point

• Here's how we copied the array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[grades.length];
for (int i = 0; i < grades.length; i++) {

other[i] = grades[i];
}

• This would also work:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
int[] other = new int[8];
for (int i = 0; i < 8; i++) {

other[i] = grades[i];
}

• Why is the first way better?

Passing an Array to a Method

• Let's put our code for finding the highest grade into a method:

public class GradeAnalyzer {

public static _______ maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

_____________________;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

System.out.println("max grade = " +

________________________________);

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 194

Passing an Array to a Method (cont.)

• What's wrong with this alternative approach?

public class GradeAnalyzer {

public static int maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

return max;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

maxGrade(grades);
System.out.println("max grade = " + max);

Passing an Array to a Method (cont.)

• We could do this instead:

public class GradeAnalyzer {

public static int maxGrade(int[] grades) {
int max = grades[0];
for (int i = 1; i < grades.length; i++) {

if (grades[i] > max) {
max = grades[i];

}
}

return max;
}

public static void main(String[] args) {
...

int maxNumGrades = console.nextInt();
int[] grades = new int[maxNumGrades];

... // code to read in the values

int max = maxGrade(grades);
System.out.println("max grade = " + max);

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 195

Finding the Average Value in an Array

• Here's a method that computes the average grade:

public static double averageGrade(int[] grades) {
int total = 0;
for (int i = 0; i < grades.length; i++) {

total += grades[i];
}

return (double)total / grades.length;
}

Testing If An Array Meets Some Condition

• Let's say that we need to be able to determine
if there are any grades below a certain cutoff value.

• e.g., to determine if a retest should be given

• Does this method work?

public static boolean
anyGradesBelow(int[] grades, int cutoff) {

for (int i = 0; i < grades.length; i++) {
if (grades[i] < cutoff) {

return true;
} else {

return false;
}

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 196

Testing If An Array Meets Some Condition (cont.)

• We can return true as soon as we find a grade that
is below the threshold.

• We can only return false if none of the grades is below.

• Here is a corrected version:

public static boolean
anyGradesBelow(int[] grades, int cutoff) {

for (int i = 0; i < grades.length; i++) {
if (grades[i] < cutoff) {

return true;
}

}

// if we get here, none of the grades is below.
return false;

}

Testing If An Array Meets Some Condition (cont.)

• Here's a similar problem: write a method that determines
if all of the grades are perfect (assume perfect = 100).

public static boolean allPerfect(int[] grades) {

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 197

Using an Array to Count Things

• Let's say that we want to count how many times each of the
possible grade values appears in a collection of grades.

• We can use an array to store the counts.

• counts[i] will store the number of times that the grade i
appears

• for this grades array

we would have this array of counts:

10 8 9 6 10 7 9 5

0 0 0 0 0 1 1 2 1 2 1

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

Using an Array to Count Things (cont.)

• The size of the counts array should be one more than the
maximum value being counted:

int max = maxGrade(grades);
int[] counts = new int[max + 1];

• Given the array, here's how to do the actual counting:

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

10 8 9 6 10 7 9 5

0 0 0 0 0 1 1 2 1 2 1

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 198

Using an Array to Count Things (cont.)

• Let's trace through this code for the grades array shown above:

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

i grades[i] operation performed

10 8 9 6 10 7 9 5

0 1 2 3 4 5 6 7 8 9 10

grades

counts

7

A Method That Returns an Array

• We can write a method to create and return the array of counts:

public static int[] getCounts(int[] grades, int maxGrade) {
int[] counts = new int[maxGrade + 1];
for (int i = 0; i < grades.length; i++) {

counts[grades[i]]++;
}

return counts;
}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = getCounts(grades, max);
...

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 199

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void triple(int[] n) {
for (int i = 0; i < n.length; i++) {

n[i] = n[i] * 3;
}

}

• When a method is passed
an array as a parameter,
it gets a copy of the reference,
not a copy of the array.

• If the method changes the internals
of the array, those changes will
be there after the method returns.

Using a Method to Change an Array's Contents

n

a

main

1 2 3

triple

Using a Method to Change an Array's Contents (cont.)

n

a

main

1 2 3

a

main

1 2 3

triple

before method call

during method call

a

main

3 6 9

after method call

a

main

3 6 9

triple

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 200

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void triple(int[] n) {
for (int i = 0; i < n.length; i++) {

n[i] = n[i] * 3; // changes internals
}

}

• If the method changes the internals
of the array, those changes will
be there after the method returns.

n

a

main

1 2 3

triple

Changing the Internals vs. Changing a Variable

3 6 9

public static void main(String[] args) {
int[] a = {1, 2, 3};
triple(a);
System.out.println(Arrays.toString(a));

}

public static void method2(int[] n) {
n = new int[3]; // changes the variable

}

• However, if the method changes
its variable for the array, that
change does not affect the
original array.

• Changing what's in one
variable doesn't affect
any other variable!

n

a

main

1 2 3

method2

Changing the Internals vs. Changing a Variable (cont.)

x

0 0 0

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 201

Swapping Elements in an Array
• We sometimes need to be able to swap two elements in an array.

• Example:

• What's wrong with this code for swapping the two values?

arr[2] = arr[5];
arr[5] = arr[2];

• it gives this:

arr 35 6 19 23 3 47 9 15

arr 35 6 47 23 3 19 9 15

arr 35 6 47 23 3 47 9 15

0 1 2 3 4 5 6 7

Swapping Elements in an Array (cont.)

• To perform a swap, we need to use a temporary variable:
int temp = arr[2];
arr[2] = arr[5];
arr[5] = temp;

arr 35 6 19 23 3 47 9 15

19temp

0 1 2 3 4 5 6 7

arr 35 6 47 23 3 47 9 15

19temp

0 1 2 3 4 5 6 7

arr 35 6 47 23 3 19 9 15

19temp

0 1 2 3 4 5 6 7

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 202

A Method for Swapping Elements
• Here's a method for swapping the elements at positions i and j

in the array arr:
public static void swap(int[] arr, int i, int j) {

int temp = arr[i];
arr[i] = arr[j];
arr[j] = temp;

}

• We don't need to return anything, because the method changes
the internals of the array that is passed in.

• Here's an example of how we would use it:
int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
swap(grades, 2, 5);
System.out.println(Arrays.toString(grades));

• What would the output be?

Recall: A Method That Returns an Array

• We can write a method to create and return the array of counts:

public static int[] getCounts(int[] grades, int maxGrade) {
int[] counts = new int[maxGrade + 1];
for (int i = 0; i < grades.length; i++) {

counts[grades[i]]++;
}

return counts;
}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = getCounts(grades, max);
...

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 203

An Alternative Approach for the Array of Counts

• Create the array ahead of time and pass it into the method:

public static void getCounts(int[] grades, int[] counts) {

for (int i = 0; i < grades.length; i++) {
counts[grades[i]]++;

}

}

public static void main(String[] args) {
... // main method begins as in the earlier versions
int max = maxGrade(grades);
int[] counts = new int[max];
getCounts(grades, counts);
...

}

• Because the method changes the internals of the array,
those changes will be there after the method returns.

Shifting Values in an Array

• Let's say a small business is using an array to store the
number of items sold over a 10-day period.

numSold[0] gives the number of items sold today
numSold[1] gives the number of items sold 1 day ago
numSold[2] gives the number of items sold 2 days ago
…
numSold[9] gives the number of items sold 9 days ago

numSold 15 8 19 2 5 8 11 18 7 16

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 204

Shifting Values in an Array (cont.)

• At the start of each day, it's necessary to shift the values over
to make room for the new day's sales.

• the last value is lost, since it's now 10 days old

• In order to shift the values over, we need to perform
assignments like the following:

numSold[9] = numSold[8];
numSold[6] = numSold[5];
numSold[2] = numSold[1];

• what is the general form (the pattern) of these assignments?

numSold 15 8 19 2 5 8 11 18 7 16

numSold 0 15 8 19 2 5 8 11 18 7

Shifting Values in an Array (cont.)

• Here's one attempt at code for shifting all of the elements:

for (int i = 0; i < numSold.length; i++) {
numSold[i] = numSold[i - 1];

}

• If we run this, we get an ArrayIndexOutOfBoundsException.
Why?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 205

Shifting Values in an Array (cont.)

• This version of the code eliminates the exception:

for (int i = 1; i < numSold.length; i++) {
numSold[i] = numSold[i – 1];

}

• Let's trace it to see what it does:

• when i == 1, we perform numSold[1] = numSold[0] to get:

• when i == 2, we perform numSold[2] = numSold[1] to get:

this obviously doesn't work!

numSold 15 8 19 2 5 8 11 18 7 16

numSold 15 15 19 2 5 8 11 18 7 16

numSold 15 15 15 2 5 8 11 18 7 16

Shifting Values in an Array (cont.)

• How can we fix this code so that it does the right thing?

for (int i = 1; i < numSold.length; i++) {
numSold[i] = numSold[i – 1];

}

for (; ;) {

}

• After performing all of the shifts, we would do: numSold[0] = 0;

numSold 0 15 8 19 2 5 8 11 18 7

numSold 15 15 8 19 2 5 8 11 18 7

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 206

"Growing" an Array

• Once we have created an array, we can't increase its size.

• Instead, we need to do the following:

• create a new, larger array (use a temporary variable)

• copy the contents of the original array into the new array

• assign the new array to the original array variable

• Example for our grades array:

int[] grades = {7, 8, 9, 6, 10, 7, 9, 5};
...
int[] temp = new int[16];
for (int i = 0; i < grades.length; i++) {

temp[i] = grades[i];
}
grades = temp;

Arrays of Objects

• We can use an array to represent a collection of objects.

• In such cases, the cells of the array store references to
the objects.

• Example:

String[] suitNames = {"clubs", "spades",
"hearts", "diamonds"};

suitNames

"clubs" "spades" "hearts" "diamonds"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 207

Two-Dimensional Arrays

• Thus far, we've been looking at single-dimensional arrays

• We can also create multi-dimensional arrays.

• The most common type is a two-dimensional (2-D) array.

• We can visualize it as a matrix consisting of rows and columns:

0 15 8 3 16 12 7 9 5

1 6 11 9 4 1 5 8 13

2 17 3 5 18 10 6 7 21

3 8 14 13 6 13 12 8 4

4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7 column
indices

row
indices

2-D Array Basics

• Example of declaring and creating a 2-D array:

int[][] scores = new int[5][8];

• To access an element, we use an expression of the form

array[row][column]

• example: scores[3][4] gives the score at row 3, column 4

number
of rows

number
of columns

0 15 8 3 16 12 7 9 5

1 6 11 9 4 1 5 8 13

2 17 3 5 18 10 6 7 21

3 8 14 13 6 13 12 8 4

4 1 9 5 16 20 2 3 9

0 1 2 3 4 5 6 7

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 208

Example Application: Maintaining a Game Board

• For a Tic-Tac-Toe board, we could use a 2-D array to keep
track of the state of the board:

char[][] board = new char[3][3];

• Alternatively, we could create and initialize it as follows:

char[][] board = {{' ', ' ', ' '},
{' ', ' ', ' '},
{' ', ' ', ' '}};

• If a player puts an X in the middle square, we could record
this fact by making the following assignment:

board[1][1] = 'X';

An Array of Arrays

• A 2-D array is really an array of arrays!

• scores[0] represents the entire first row
scores[1] represents the entire second row, etc.

• array.length gives the number of rows
array[row].length gives the number of columns in that row

15 8 3 16 12 7 9 5

6 11 9 4 1 5 8 13

17 3 5 18 10 6 7 21

8 14 13 6 13 12 8 4

1 9 5 16 20 2 3 9

scores

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 209

Processing All of the Elements in a 2-D Array

• To perform some operation on all of the elements in a 2-D
array, we typically use a nested loop.

• example: finding the maximum value in a 2-D array.

public static int maxValue(int[][] arr) {
int max = arr[0][0];
for (int r = 0; r < arr.length; r++) {

for (int c = 0; c < arr[r].length; c++) {
if (arr[r][c] > max) {

max = arr[r][c];
}

}
}

return max;
}

Optional: Other Multi-Dimensional Arrays

• It's possible to have a "ragged" 2-D array in which different
rows have different numbers of columns:

int[][] foo = {{11, 22, 33},
{7, 20, 30, 40},
{1, 2}};

• We can also create arrays of higher dimensions.

• example: a three-dimensional matrix:

double[][][] matrix = new double[2][5][4];

11 22 33

10 20 30 40

1 2

foo

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 210

File Processing

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 4, Part 2

A Class for Representing a File
• The File class in Java is used to represent a file on disk.

• To use it, we need to import the java.io package:
import java.io.*;

• Here's how we typically create a File object:
File f = new File("filename");

• Here are some useful methods from this class:

public boolean exists()
public boolean canRead()
public boolean canWrite()
public boolean delete()
public long length()
public String getName()
public String getPath()

See the Java API documentation for more info.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 211

Review: Scanner Objects

• We've been using a Scanner object to read from the console:
Scanner console = new Scanner(System.in);

tells the constructor to
construct a Scanner object
that reads from the console

• Scanner methods:
next()

nextInt()

nextDouble()

nextLine()

Reading from a Text File

• We can also use a Scanner object to read from a text file:

File f = new File("filename");
Scanner input = new Scanner(f);

tells the constructor to
construct a Scanner object
that reads from the file

• We can combine the two lines above into a single line:
Scanner input = new Scanner(new File("filename"));

• We use a different name for the Scanner (input),
to stress that we're reading from an input file.

• All of the same Scanner methods can be used.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 212

Scanner Lookahead and Files
• When reading a file, we often don't know how big the file is.

• Solution: use an indefinite loop and a Scanner "lookahead"
method.

• Basic structure:

Scanner input = new Scanner(new File(filename));

while (input.hasNextLine()) {
String line = input.nextLine();

// code to process the line goes here…
}

• hasNextLine() returns:

• true if there's at least one more line of the file to be read

• false if we've reached the end of the file

Sample Problem: Printing the Contents of a File
• Assume that we've already created a Scanner called input

that is connected to a file.

• Here's the code for printing its contents:

while (input.hasNextLine()) {
String line = input.nextLine();
System.out.println(line);

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 213

File-Processing Exceptions
• Recall: An exception is an error that occurs at runtime as a

result of some type of "exceptional" circumstance.

• We've seen several examples:
StringIndexOutOfBoundsException

IllegalArgumentException

TypeMismatchException

• When using a Scanner to process a file, we can get a
FileNotFoundException

• if the file that we specify isn't there

• if the file is inaccessible for some reason

Checked vs. Unchecked Exceptions
• Most of the exceptions we've seen thus far have been

unchecked exceptions.

• we do not need to handle them

• instead, we usually take steps to avoid them

• FileNotFoundException is a checked exception.
The compiler checks that we either:

1) handle it

2) declare that we don't handle it

• For now, we'll take option 2. We do this by adding a
throws clause to the header of any method in which a
Scanner for a file is created:

public static void main(String[] args)
throws FileNotFoundException {

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 214

Sample Program: Counting the Lines in a File
import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class CountLines {
public static void main(String[] args)

throws FileNotFoundException {
Scanner input = new Scanner(new File("romeo.txt"));

int count = 0;
while (input.hasNextLine()) {

input.nextLine(); // read line and throw away
count++;

}

System.out.println("The file has " + count +
" lines.");

}
}

Counting Lines in a File, version 2
import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class CountLines {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Name of file: ");
String fileName = console.next();

Scanner input = new Scanner(new File(fileName));

int count = 0;
while (input.hasNextLine()) {

input.nextLine(); // read line and throw away
count++;

}

System.out.println("The file has " + count +
" lines.");

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 215

Counting Lines in a File, version 3
…
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Name of file: ");
String fileName = console.next();
System.out.println("The file has " +

numLines(fileName) + " lines.");
}

public static int numLines(String fileName)
throws FileNotFoundException {

Scanner input = new Scanner(new File(fileName));
int count = 0;
while (input.hasNextLine()) {

input.nextLine(); // read line and throw away
count++;

}
return count;

}

• We put the counting code in a separate method (numLines).

• Both numLines and main need a throws clause.

Extracting Data from a File

• Collections of data are often stored in a text file.

• Example: the results of a track meet might be summarized
in a text file that looks like this:

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Fran Flash,BU,800m,2:15:00
Tammy Turtle,UMass,800m,4:00:00

• Each line of the file represents a record.

• Each record is made up of multiple fields.

• In this case, the fields are separated by commas.

• known as a CSV file – comma separated values

• the commas serve as delimiters

• could also use spaces or tabs ('\t') instead of commas

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 216

Extracting Data from a File (cont.)

Mike Mercury,BU,mile,4:50:00
Steve Slug,BC,mile,7:30:00
Fran Flash,BU,800m,2:15:00
Tammy Turtle,UMass,800m,4:00:00

• We want a program that:

• reads in a results file like the one above

• extracts and prints only the results for a particular school

• with the name of the school omitted

• Basic approach:

• ask the user for the school of interest (the target school)

• read one line at a time from the file

• split the line into fields

• if the field corresponding to the school name matches
the target school, print out the other fields in that record

Splitting a String

• The String class includes a method named split().

• breaks a string into component strings

• takes a parameter indicating what delimiter should be
used when performing the split

• returns a String array containing the components

• Example:
String sentence = "How now brown cow?";
String[] words = sentence.split(" ");
System.out.println(words[0]);
System.out.println(words[3]);
System.out.println(words.length);

would output:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 217

Extracting Data from a File (cont.)

import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class ExtractResults {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);

System.out.print("School to extract: ");
String targetSchool = console.nextLine();

Scanner input = new Scanner(new File("results.txt"));
while (input.hasNextLine()) {

String record = input.nextLine();
String[] fields = record.split(",");

if (fields[1].equals(targetSchool)) {
System.out.print(fields[0] + ",");
System.out.println(fields[2] + "," + fields[3]);

}
}

}
}

• How can we modify it to print a message when
no results are found for the target school?

Example Problem: Averaging Enrollments
• Let's say that we have a file showing how course enrollments

have changed over time:

cs111 90 100 120 115 140 170 130 135 125
cs105 14 8
cs108 40 35 30 42 38 26
cs101 180 200 175 190 200 230 160 154 120

• For each course, we want to compute the average enrollment.

• different courses have different numbers of values

• Initial pseudocode:
while (there is another course in the file) {

read the line corresponding to the course
split it into an array of fields
average the fields for the enrollments
print the course name and average enrollment

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 218

Example Problem: Averaging Enrollments (cont.)

cs108 40 35 30 42 38 26
cs111 90 100 120 115 140 170 130 135 125
cs105 14 8
cs101 180 200 175 190 200 230 160 154 120

• When we split a line into fields, we get an array of strings.

• example for the first line above:
{"cs108", "40", "35", "30", "42", "38", "26"}

• We can convert the enrollments from strings to integers using
a method called Integer.parseInt()

• example:
String[] fields = record.split(" ");
String courseName = fields[0];
int firstEnrollment = Integer.parseInt(fields[1]);

• note: parseInt() is a static method, so we call it using
its class name (Integer)

Example Problem: Averaging Enrollments (cont.)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 219

Other Details About Reading Text Files

• Although we think of a text file as being two-dimensional
(like a piece of paper), the computer treats it as a
one-dimensional string of characters.

• example: the file containing these lines
Hello, world.
How are you?
I'm tired.

is represented like this:
Hello, world.\nHow are you?\nI'm tired.\n

• When reading a file using a Scanner, you are limited to
sequential accesses in the forward direction.

• you can't back up

• you can't jump to an arbitrary location

• to go back to the beginning of the file,
you need to create a new Scanner object.

Optional Extra Topic: Writing to a Text File
• To write to a text file, we can use a PrintStream object,

which has the same methods that we've used with System.out:
• print(), println()

• Actually, System.out is a PrintStream that has been
constructed to print to the console.

• To instantiate a PrintStream for a file:
File f = new File("filename");
PrintStream output = new PrintStream(f);

• We can also combine these two steps:
PrintStream output = new PrintStream(
new File("filename"));

• If there's an existing file with the same name, it will be overwritten.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 220

Copying a Text File
import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class CopyFile {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);
System.out.print("Name of original file: ");
String original = console.next();
System.out.print("Name of copy: ");
String copy = console.next();

Scanner input = new Scanner(new File(original));
PrintStream output = new PrintStream(new File(copy));

while (input.hasNextLine()) {
String line = input.nextLine();
output.println(line);

}
}

}
• How could we combine the two lines
in the body of the while loop?

Our Track-Meet Program Revisited
import java.util.*; // needed for Scanner
import java.io.*; // needed for File

public class ExtractResults {
public static void main(String[] args)

throws FileNotFoundException {
Scanner console = new Scanner(System.in);

System.out.print("School to extract: ");
String targetSchool = console.nextLine();

Scanner input = new Scanner(new File("results.txt"));
while (input.hasNextLine()) {

String record = input.nextLine();
String[] fields = record.split(",");

if (fields[1].equals(targetSchool)) {
System.out.print(fields[0] + ",");
System.out.println(fields[2] + "," + fields[3]);

}
}

}
}

• How can we modify it to print the extracted results
to a separate file?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 221

Optional Extra Topic: Binary Files

• Not all files are text files.

• Binary files don't store the string representation of non-string
values.

• instead, they store their binary representation – the way
they are stored in memory

• Example: 125

• the text representation of 125 stores the string "125" –
i.e., the characters for the individual digits in the number

• the binary representation of 125 stores the four-byte
binary representation of the integer 125

'1' '2' '5'

0 0 0 125

49 50 53

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 222

Recursion

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 4, Part 3

Review: Method Frames

• When you make a method call, the Java runtime sets aside
a block of memory known as the frame of that method call.

• The frame is used to store:

• the formal parameters of the method

• any local variables - variables declared within the method

• A given frame can only be accessed by statements that are
part of the corresponding method call.

number otherNumber

main

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 223

Frames and the Stack
• The frames we've been speaking about are stored in a region

of memory known as the stack.

• For each method call, a new frame is added to the top of the
stack.

public class Foo {
public static int y(int i) {

int j = i * 3;
return j;

}
public static int x(int i) {

int j = i - 2;
return y(i + j);

}
public static void

main(String[] args) {
System.out.println(x(5));

}
}

• When a method completes, its stack frame is removed.

y(8)

x(5)
5i

j 3

args

8i

j 24

Iteration

• Whenever we've encountered a problem that requires repetition,
we've used iteration - i.e., some type of loop.

• Sample problem: printing the series of integers from
n1 to n2, where n1 <= n2.

• example: printSeries(5, 10) should print the following:

5, 6, 7, 8, 9, 10

• Here's an iterative solution to this problem:

public static void printSeries(int n1, int n2) {
for (int i = n1; i < n2; i++) {

System.out.print(i + ", ");
}
System.out.println(n2);

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 224

Recursion

• An alternative approach to problems that require repetition
is to solve them using a method that calls itself.

• Applying this approach to the print-series problem gives:

public static void printSeries(int n1, int n2) {
if (n1 == n2) {

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• A method that calls itself is a recursive method.

• This approach to problem-solving is known as recursion.

Tracing a Recursive Method

public static void printSeries(int n1, int n2) {
if (n1 == n2) {

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• What happens when we execute printSeries(5, 7)?

printSeries(5, 7):
System.out.print(5 + ", ");
printSeries(6, 7):

System.out.print(6 + ", ");
printSeries(7, 7):

System.out.println(7);
return

return
return

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 225

Recursive Problem-Solving
• When we use recursion, we solve a problem by reducing it

to a simpler problem of the same kind.

• We keep doing this until we reach a problem that is
simple enough to be solved directly.

• This simplest problem is known as the base case.

public static void printSeries(int n1, int n2) {
if (n1 == n2) { // base case

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• The base case stops the recursion, because it doesn't
make another call to the method.

Recursive Problem-Solving (cont.)

• If the base case hasn't been reached, we execute the
recursive case.

public static void printSeries(int n1, int n2) {
if (n1 == n2) { // base case

System.out.println(n2);
} else { // recursive case

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• The recursive case:

• reduces the overall problem to one or more simpler problems
of the same kind

• makes recursive calls to solve the simpler problems

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 226

Structure of a Recursive Method

recursiveMethod(parameters) {
if (stopping condition) {

// handle the base case
} else {

// recursive case:
// possibly do something here

recursiveMethod(modified parameters);

// possibly do something here
}

}

• There can be multiple base cases and recursive cases.

• When we make the recursive call, we typically use
parameters that bring us closer to a base case.

Tracing a Recursive Method: Second Example

public static void mystery(int i) {
if (i <= 0) { // base case

return;
}
// recursive case
System.out.println(i);
mystery(i - 1);
System.out.println(i);

}

• What happens when we execute mystery(2)?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 227

Printing a File to the Console

• Here's a method that prints a file using iteration:

public static void print(Scanner input) {
while (input.hasNextLine()) {

System.out.println(input.nextLine());
}

}

• Here's a method that uses recursion to do the same thing:

public static void printRecursive(Scanner input) {
// base case
if (!input.hasNextLine()) {

return;
}

// recursive case
System.out.println(input.nextLine());
printRecursive(input); // print the rest

}

Printing a File in Reverse Order

• What if we want to print the lines of a file in reverse order?

• It's not easy to do this using iteration. Why not?

• It's easy to do it using recursion!

• How could we modify our previous method to make it
print the lines in reverse order?

public static void printRecursive(Scanner input) {
if (!input.hasNextLine()) { // base case

return;
}

String line = input.nextLine();
System.out.println(line);
printRecursive(input); // print the rest

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 228

Printing a File in Reverse Order (cont.)

• An iterative approach to reversing the file would need to:

• read all of the lines in the file and store them in a
temporary data structure (e.g., an array)

• retrieve the lines from the data structure and
print them in reverse order

• The recursive method doesn't need a separate data structure.

• the lines are stored in the stack frames for the
recursive method calls!

A Recursive Method That Returns a Value

• Simple example: summing the integers from 1 to n

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

• Example of this approach to computing the sum:

sum(6) = 6 + sum(5)
= 6 + 5 + sum(4)

…

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 229

Tracing a Recursive Method

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

• What happens when we execute int x = sum(3);

from inside the main() method?

Tracing a Recursive Method on the Stack

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

Example: sum(3)

return 0

time

3n
rest

2n
rest

1n
rest

0n
rest

3n
rest

2n
rest

1n
rest 0

3n
rest

2n
rest 1

3n
rest 3

3n
rest

3n
rest

2n
rest

3n
rest

2n
rest

1n
rest

return 1+0

return 2+1

base case

return 3+3

final result: 6

rest = sum(0)
= 0

The final result
gets built up
on the way back
from the base case!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 230

Another Option for Tracing a Recursive Method

public static int sum(int n) {
if (n <= 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

Infinite Recursion

• We have to ensure that a recursive method will eventually
reach a base case, regardless of the initial input.

• Otherwise, we can get infinite recursion.

• produces stack overflow - there's no room for
more frames on the stack!

• Example: here's a version of our sum() method that uses
a different test for the base case:

public static int sum(int n) {
if (n == 0) {

return 0;
}
int rest = sum(n - 1);
return n + rest;

}

• what values of n would cause infinite recursion?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 231

Designing a Recursive Method

1. Start by programming the base case(s).

• What instance(s) of this problem can I solve directly
(without looking at anything smaller)?

2. Find the recursive substructure.

• How could I use the solution to any smaller version
of the problem to solve the overall problem?

3. Solve the smaller problem using a recursive call!

• store its result in a variable

4. Do your one step.

• build your solution from the result of the recursive call

• use concrete cases to figure out what you need to do

Processing a String Recursively

• A string is a recursive data structure. It is either:

• empty ("")

• a single character, followed by a string

• Thus, we can easily use recursion to process a string.

• process one or two of the characters ourselves

• make a recursive call to process the rest of the string

• Example: print a string vertically, one character per line:

public static void printVertical(String str) {
if (str == null || str.equals("")) {

return;
}

System.out.println(str.charAt(0)); // first char
printVertical(str.substring(1)); // rest of string

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 232

Short-Circuited Evaluation

• The second operand of both the && and || operators
will not be evaluated if the result can be determined on the
basis of the first operand alone.

• expr1 || expr2

if expr1 evaluates to true, expr2 is not evaluated,
because we already know that expr1 || expr2 is true

• example from the last slide:
if (str == null || str.equals("")) {

return;
}

// if str is null, we won't check for empty string.
// This prevents a null pointer exception!

• expr1 && expr2

if expr1 evaluates to , expr2 is not evaluated,
because we already know that expr1 && expr2 is .

Counting Occurrences of a Character in a String

• numOccur(c, s) should return the number of times that
the character c appears in the string s

• numOccur('n', "banana") should return 2

• numOccur('a', "banana") should return 3

• Take the approach outlined earlier:

• base case: empty string (or null)

• delegate s.substring(1) to the recursive call

• we're responsible for handling s.charAt(0)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 233

Applying the String-Processing Template

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) { // base case

return __________;
} else { // recursive case

int rest = __________________;
// do our one step!

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 234

Determining Our One Step

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
// do our one step!

• In our one step, we take care of s.charAt(0).

• we build the solution to the larger problem on the
solution to the smaller problem (in this case, rest)

• does what we do depend on the value of s.charAt(0)?

• Use concrete cases to figure out the logic!

Consider this concrete case…

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
// do our one step!
...

numOccur('r', "recurse")

numOccur('r', "recurse")
c = 'r', s = "recurse"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 235

Consider Concrete Cases

numOccur('r', "recurse") # first char is a match

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem?
What is our one step?

numOccur('a', "banana") # first char is not a match

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem?
What is our one step?

Now complete the method!

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
} else {

int rest = numOccur(c, s.substring(1));
if (s.charAt(0) == c) {

return ___________________;
} else {

return ___________________;
}

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 236

Tracing a Recursive Method on the Stack
public static int numOccur(char c, String s) {

if (s == null || s.equals("")) {
return 0;

} else {
int rest = numOccur(c, s.substring(1));
if (s.charAt(0) == c) {

return 1 + rest;
} else {

return rest;
}

}
}

numOccur('a', "aha")

time

"aha"s
rest

return 0

base case

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest

"aha"s
rest 1

"ha"s
rest

"ha"s
rest

"ha"s
rest

"ha"s
rest

"ha"s
rest 1

"a"s
rest

"a"s
rest

"a"s
rest 0

""s
rest

return 1+0

return 1

return 1+1

The final result
gets built up
on the way back
from the base case!

Common Mistake

• This version of the method does not work:

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
}

int count = 0;
if (s.charAt(0) == c) {

count++;
}

numOccur(c, s.substring(1));
return count;

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 237

Another Faulty Approach

• Some people make count "global" to fix the prior version:

public static int count = 0;

public static int numOccur(char c, String s) {
if (s == null || s.equals("")) {

return 0;
}

if (s.charAt(0) == c) {
count++;

}

numOccur(c, s.substring(1));
return count;

}

• Not recommended, and not allowed on the problem sets!

• Problems with this approach?

Recursion vs. Iteration
• Some problems are much easier to solve using recursion.

• Other problems are just as easy to solve using iteration.

• Recursion is a bit more costly because of the overhead involved
in invoking a method.

• also: in some cases, there may not be room on the stack

• Rule of thumb:

• if it's easier to formulate a solution recursively, use recursion,
unless the cost of doing so is too high

• otherwise, use iteration

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 238

Extra Practice: A Recursive Palindrome Checker

• A palindrome is a string that reads the same forward and
backward.

• examples: "radar", "mom", "abcddcba"

• isPal(s) should return true if s is a palindrome,
and false otherwise.

• We need more than one base case. What are they?

• How should we reduce the problem in the recursive call?

Consider Concrete Cases!

isPal("radar")

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

isPal("modem")

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem...?
What is our one step?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 239

A Recursive Palindrome Checker (cont.)

• Method definition (assuming no nulls):

public static boolean isPal(String s) {
int len = s.length();
if (len <= 1) {

return __________;

} else if (_________________________________) {

return __________;
} else {

boolean isPalRest = _________________________;

// do our one step!

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 240

Classes as Blueprints:
How to Define New Types of Objects

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 5, Part 1

Types of Decomposition

• When writing a program, it's important to decompose it into
manageable pieces.

• We've already seen how to use procedural decomposition.

• break a task into smaller subtasks, each of which gets
its own method

• Another way to decompose a program is to view it as a
collection of objects.

• referred to as object-oriented programming

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 241

Review: What is an Object?

• An object groups together:

• one or more data values (the object's fields)

• a set of operations that the object can perform
(the object's methods)

Review: Using an Object's Methods

• An object's methods are different from the static methods
that we've been writing thus far.

• they're called non-static or instance methods

• When using an instance method, we specify the object
to which the method belongs by using dot notation:

String firstName = "Perry";
int len = firstName.length();

• Using an instance method is like sending a message
to an object, asking it to perform an operation.

• We refer to the object on which the method is invoked
as either:

• the called object

• the current object

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 242

Review: Classes as Blueprints

• We've been using classes as containers for our programs.

• A class can also serve as a blueprint – as the definition of
a new type of object.

• specifying the fields and methods that objects of that type
will have

• The objects of a given class are built according to its blueprint.

• Objects of a class are referred to as instances of the class.

Rectangle Objects

• Java comes with a built-in Rectangle class.

• in the java.awt package

• Each Rectangle object has the following fields:

• x – the x coordinate of its upper left corner

• y – the y coordinate of its upper left corner
• width

• height

• Here's an example of one:

height 30

width 50

y 150

x 200

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 243

Rectangle Methods

• A Rectangle's methods include:

void grow(int h, int v)
void translate(int x, int y)
double getWidth()
double getHeight()
double getX()
double getY()

Writing a "Blueprint Class"

• To illustrate how to define a new type of object,
let's write our own class for Rectangle objects.

public class Rectangle {
...

• As always, the class definition goes in an appropriately named
text file.

• in this case: Rectangle.java

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 244

Using Fields to Capture an Object's State

• Here's the first version of our Rectangle class:

public class Rectangle {
int x;
int y;
int width;
int height;

}

• it declares four fields,
each of which stores an int

• each Rectangle object gets
its own set of these fields

• Another name for a field is an instance variable.

height

width

y

x

Using Fields to Capture an Object's State (cont.)

• For now, we'll create Rectangle objects like this:

Rectangle r1 = new Rectangle();

• The fields are initially filled with
the default values for their types.

• just like array elements

• Fields can be accessed
using dot notation:

r1.x = 10;
r1.y = 20;
r1.width = 100;
r1.height = 50; height 50

width 100

y 20

x 10r1

height 0

width 0

y 0

x 0r1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 245

Client Programs

• Our Rectangle class is not a program.

• it has no main method

• Instead, it will be used by code defined in other classes.

• referred to as client programs or client code

• More generally, when we define a new type of object,
we create a building block that can be used in other code.

• just like the objects from the built-in classes:
String, Scanner, File, etc.

• our programs have been clients of those classes

Initial Client Program
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle();
r1.x = 10; r1.y = 20;
r1.width = 100; r1.height = 50;

Rectangle r2 = new Rectangle();
r2.x = 50; r2.y = 100;
r2.width = 20; r2.height = 80;

System.out.println("r1: " + r1.width + " x " + r1.height);
int area1 = r1.width * r1.height;
System.out.println("area = " + area1);

System.out.println("r2: " + r2.width + " x " + r2.height);
int area2 = r2.width * r2.height;
System.out.println("area = " + area2);

// grow both rectangles
r1.width += 50; r1.height += 10;
r2.width += 5; r2.height += 30;

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 246

Using Methods to Capture an Object's Behavior

• It would be useful to have a method for growing a Rectangle.

• One option would be to define a static method:

public static void grow(Rectangle r, int dWidth, int dHeight) {
r.width += dWidth;
r.height += dHeight;

}

• This would allow us to replace the statements

r1.width += 50;

r1.height += 10;

with the method call

Rectangle.grow(r1, 50, 10);

Using Methods to Capture an Object's Behavior

• It would be useful to have a method for growing a Rectangle.

• One option would be to define a static method in our
Rectangle class:

public static void grow(Rectangle r, int dWidth, int dHeight) {
r.width += dWidth;
r.height += dHeight;

}

• This would allow us to replace these statements in the client

r1.width += 50;

r1.height += 10;

with the method call
Rectangle.grow(r1, 50, 10);

(Note: We need to use the class name, because we're calling
the method from outside the Rectangle class.)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 247

Using Methods to Capture an Object's Behavior (cont.)

• A better approach is to give each Rectangle object
the ability to grow itself.

• We do so by defining a non-static or instance method.

• We'll use dot notation to call the instance method:

r1.grow(50, 10);

instead of Rectangle.grow(r1, 50, 10);

• This is like sending a message to r1, asking it to grow itself.

Using Methods to Capture an Object's Behavior (cont.)

• Here's our grow instance method:
public void grow(int dWidth, int dHeight) { // no static

this.width += dWidth;
this.height += dHeight;

}

• We don't pass the Rectangle object as an explicit parameter.

• Instead, the Java keyword this gives us access to
the called object.

• every instance method has this special variable

• referred to as the implicit parameter

• Example: r1.grow(50, 10)

• r1 is the called object

• this.width gives us access to r1's width field

• this.height gives us access to r1's height field

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 248

Comparing the Static and Non-Static Versions

• Static:
public static void grow(Rectangle r, int dWidth, int dHeight) {

r.width += dWidth;
r.height += dHeight;

}

• sample method call: Rectangle.grow(r1, 50, 10);

• Non-static:
public void grow(int dWidth, int dHeight) {

this.width += dWidth;
this.height += dHeight;

}

• there's no keyword static in the method header

• the Rectangle object is not an explicit parameter

• the implicit parameter this gives access to the object

• sample method call: r1.grow(50, 10);

Omitting the Keyword this

• The use of this to access the fields is optional.

• example:
public void grow(int dWidth, int dHeight) {

width += dWidth;
height += dHeight;

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 249

Another Example of an Instance Method

• Here's an instance method for getting the area of a Rectangle:

public int area() {
return this.width * this.height;

}

• Sample method calls:

int area1 = r1.area();
int area2 = r2.area();

• we're asking r1 and r2 to
give us their areas

• no explicit parameters
are needed because
the necessary info.
is in the objects' fields!

height 80

width 20

y 100

x 50r2

height 50

width 100

y 20

x 10r1

Types of Instance Methods

• There are two main types of instance methods:

• mutators – methods that change an object's internal state

• accessors – methods that retrieve information from an object
without changing its state

• Examples of mutators:

• grow() in our Rectangle class

• Examples of accessors:

• area() in our Rectangle class

• String methods: length(), substring(), charAt()

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 250

Second Version of our Rectangle Class
public class Rectangle {

int x;
int y;
int width;
int height;

public void grow(int dWidth, int dHeight) {
this.width += dWidth;
this.height += dHeight;

}

public int area() {
return this.width * this.height;

}
}

Which method call increases r's height by 5?
public class Rectangle {

int x;
int y;
int width;
int height;

public void grow(int dWidth, int dHeight) {
this.width += dWidth;
this.height += dHeight;

}

public int area() {
return this.width * this.height;

}
}

• Consider this client code:
Rectangle r = new Rectangle();
r.width = 10;
r.height = 15;

______???______;

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 251

Initial Client Program
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle();
r1.x = 10; r1.y = 20;
r1.width = 100; r1.height = 50;

Rectangle r2 = new Rectangle();
r2.x = 50; r2.y = 100;
r2.width = 20; r2.height = 80;

System.out.println("r1: " + r1.width + " x " + r1.height);
int area1 = r1.width * r1.height;
System.out.println("area = " + area1);

System.out.println("r2: " + r2.width + " x " + r2.height);
int area2 = r2.width * r2.height;
System.out.println("area = " + area2);

// grow both rectangles
r1.width += 50; r1.height += 10;
r2.width += 5; r2.height += 30;

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

Revised Client Program
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle();
r1.x = 10; r1.y = 20;
r1.width = 100; r1.height = 50;

Rectangle r2 = new Rectangle();
r2.x = 50; r2.y = 100;
r2.width = 20; r2.height = 80;

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("area = " + r1.area());

System.out.println("r2: " + r2.width + " x " + r2.height);
System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 252

Practice Defining Instance Methods
• Add a mutator method that moves the rectangle to the right

by a specified amount.

public ______ moveRight(___________________) {

}

• Add an accessor method that determines if the rectangle
is a square (true or false).

public __________ isSquare(____________) {

}

Defining a Constructor
• Our current client program has to use several lines

to initialize each Rectangle object:
Rectangle r1 = new Rectangle();
r1.x = 10; r1.y = 20;

r1.width = 100; r1.height = 50;

• We'd like to be able to do something like this instead:
Rectangle r1 = new Rectangle(10, 20, 100, 50);

• To do so, we need to define a constructor, a special method
that initializes the state of an object when it is created.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 253

Defining a Constructor (cont.)

• Here it is:
public Rectangle(int initialX, int initialY,
int initialWidth, int initialHeight) {
this.x = initialX;
this.y = initialY;
this.width = initialWidth;
this.height = initialHeight;

}

• General syntax for a constructor:

public ClassName(parameter list) {

body of the constructor

}

• Note that a constructor has no return type.

Third Version of our Rectangle Class
public class Rectangle {

int x;
int y;
int width;
int height;

public Rectangle(int initialX, int initialY,
int initialWidth, int initialHeight) {

this.x = initialX;
this.y = initialY;
this.width = initialWidth;
this.height = initialHeight;

}

public void grow(int dWidth, int dHeight) {
this.width += dWidth;
this.height += dHeight;

}

public int area() {
return this.width * this.height;

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 254

Revised Client Program
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("area = " + r1.area());

System.out.println("r2: " + r2.width + " x " + r2.height);
System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

A Closer Look at Creating an Object
• What happens when the following line is executed?

Rectangle r1 = new Rectangle(10, 20, 100, 50);

• Several different things actually happen:

1) a new Rectangle object is created

• initially, all fields have their default values

2) the constructor is then called to assign values to the fields

3) a reference to the new object is stored in the variable r1

0height 0height

0width 0width

0y 0y

0x 0xr1r1

50height 50height

100width 100width

20y 20y

10x 10xr1r1

50height 50height

100width 100width

20y 20y

10x 10xr1r1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 255

Limiting Access to Fields
• The current version of our Rectangle class allows clients

to directly access a Rectangle object's fields:
r1.width = 100;
r1.height += 20;

• This means that clients can make inappropriate changes:
r1.width = -100;

• To prevent this, we can declare the fields to be private:
public class Rectangle {

private int x;
private int y;
private int width;
private int height;
...

}

• This indicates that these fields can only be accessed or
modified by methods that are part of the Rectangle class.

Limiting Access to Fields (cont.)

• Now that the fields are private, our client program won't compile:

public class RectangleClient {
public static void main(String[] args) {

Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("area = " + r1.area());

System.out.println("r2: " + r2.width + " x " + r2.height);
System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1.width + " x " + r1.height);
System.out.println("r2: " + r2.width + " x " + r2.height);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 256

Adding Accessor Methods for the Fields
public class Rectangle {

private int x;
private int y;
private int width;
private int height;
...
public int getX() {

return this.x;
}
public int getY() {

return this.y;
}
public int getWidth() {

return this.width;
}
public int getHeight() {

return this.height;
}

}

• These methods are public, which indicates that they can be
used by code that is outside the Rectangle class.

Revised Client Program

public class RectangleClient {
public static void main(String[] args) {

Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);

System.out.println("r1: " + r1.getWidth() + " x " +
r1.getHeight());

System.out.println("area = " + r1.area());

System.out.println("r2: " + r2.getWidth() + " x " +
r2.getHeight());

System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1.getWidth() + " x " +
r1.getHeight());

System.out.println("r2: " + r2.getWidth() + " x " +
r2.getHeight());

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 257

Access Modifiers

• public and private are known as access modifiers.

• they specify where a class, field, or method can be used

• A class is usually declared to be public:

public class Rectangle {

• indicates that objects of the class can be used anywhere,
including in other classes

• Fields are usually declared to be private.

• Methods are usually declared to be public.

• We occasionally define private methods.

• serve as helper methods for the public methods

• cannot be invoked by code that is outside the class

Allowing Only Appropriate Changes

• To allow for appropriate changes to an object,
we add whatever mutator methods make sense.

• These methods can prevent inappropriate changes:

public void setLocation(int newX, int newY) {
if (newX < 0 || newY < 0) {

throw new IllegalArgumentException();
}

this.x = newX;
this.y = newY;

}

• Throwing an exception ends the method early.

• If the caller of the method doesn't handle the exception,
it will crash.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 258

Allowing Only Appropriate Changes (cont.)

• Here are two other mutator methods:

public void setWidth(int newWidth) {
if (newWidth <= 0) {

throw new IllegalArgumentException();
}

this.width = newWidth;
}

public void setHeight(int newHeight) {
if (newHeight <= 0) {

throw new IllegalArgumentException();
}

this.height = newHeight;
}

Instance Methods Calling Other Instance Methods

• Here's another mutator method that we already had:
public void grow(int dWidth, int dHeight) {

this.width += dWidth;
this.height += dHeight;

}

• However, it doesn't prevent inappropriate changes.

• Rather than adding error-checking to it, we can have it call
the new mutator methods:

public void grow(int dWidth, int dHeight) {
this.setWidth(this.width + dWidth);
this.setHeight(this.height + dHeight);

}

• we use this to call another method in the same object

• those other methods perform the necessary error-checking

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 259

Revised Constructor

• To prevent invalid values in the fields of a Rectangle object,
we also need to modify our constructor.

• Here again, we take advantage of the error-checking code
that's already present in the mutator methods:

public Rectangle(int initialX, int initialY,
int initialWidth, int initialHeight)

{
this.setLocation(initialX, initialY);
this.setWidth(initialWidth);
this.setHeight(initialHeight);

}

• setLocation, setWidth, and setHeight operate on
the newly created Rectangle object

Extra Practice: Revising Client Code

public class MyProgram {
public static void main(String[] args) {

Rectangle r = new Rectangle(0, 0, 120, 70);

System.out.println(r.width + " " + r.height);
r.height = 10;
r.width = r.width * 2;

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 260

Encapsulation
• Encapsulation is one of the key principles of object-oriented

programming.

• It refers to the practice of “hiding” the implementation of
a class from users of the class.

• prevent direct access to the internals of an object

• making the fields private

• provide limited, indirect access through a set of methods

• making them public

• In addition to preventing inappropriate changes,
encapsulation allows us to change the implementation
of a class without breaking the client code that uses it.

Abstraction

• Abstraction involves focusing on the essential properties of
something, rather than its inner or low-level details.

• an important concept in computer science

• Encapsulation leads to abstraction.

• example: rather than treating a Rectangle as four ints,
we treat it as an object that's capable of growing itself,
changing its location, etc.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 261

Practice Defining Instance Methods
• Add a mutator method that scales the dimensions of

a Rectangle object by a specified factor.

• make the factor a double, to allow for fractional values

• take advantage of existing mutator methods

• use a type cast to turn the result back into an integer

public _________ scale(___________________) {

}

• Add an accessor method that gets the perimeter of
a Rectangle object.

public _________ perimeter(___________________) {

}

Testing for Equivalent Objects

• Let's say that we have two different Rectangle objects,
both of which represent equivalent rectangles:

Rectangle rect1 = new Rectangle(10, 100, 20, 55);
Rectangle rect2 = new Rectangle(10, 100, 20, 55);

• What is the value of the following condition?

rect1 == rect2

height 55

width 20

y 100

x 10

height 55

width 20

y 100

x 10
rect1

rect2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 262

Testing for Equivalent Objects (cont.)

• The condition

rect1 == rect2

compares the references stored in rect1 and rect2.

• It doesn't compare the objects themselves.

2000

3152
height 55

width 20

y 100

x 10

rect1

rect2

height 55

width 20

y 100

x 10

memory location: 3152

memory location: 2000

Testing for Equivalent Objects (cont.)

• Recall: to test for equivalent objects, we need to use
the equals method:

rect1.equals(rect2)

• Java's built-in classes have equals methods that:

• return true if the two objects are equivalent to each other

• return false otherwise

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 263

Default equals() Method

• If we don't write an equals() method for a class,
objects of that class get a default version of this method.

• The default equals() just tests if the memory addresses
of the two objects are the same.

• the same as what == does!

• To ensure that we're able to test for equivalent objects,
we need to write our own equals() method.

equals() Method for Our Rectangle Class

public boolean equals(Rectangle other) {
if (other == null) {

return false;
} else if (this.x != other.x) {

return false;
} else if (this.y != other.y) {

return false;
} else if (this.width != other.width) {

return false;
} else if (this.height != other.height) {

return false;
} else {

return true;
}

}

• Note: The method is able to access the fields in other
directly (without using accessor methods).

• Instance methods can access the private fields of any object
from the same class as the method.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 264

equals() Method for Our Rectangle Class (cont.)

• Here's an alternative version:

public boolean equals(Rectangle other) {
return (other != null

&& this.x == other.x
&& this.y == other.y
&& this.width == other.width
&& this.height == other.height);

}

Converting an Object to a String

• The toString() method allows objects to be displayed
in a human-readable format.

• it returns a string representation of the object

• This method is called implicitly when you attempt to print an
object or when you perform string concatenation:
Rectangle r1 = new Rectangle(10, 20, 100, 80);
System.out.println(r1);

// the second line above is equivalent to:
System.out.println(r1.toString());

• If we don't write a toString() method for a class,
objects of that class get a default version of this method.

• here again, it usually makes sense to write
our own version

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 265

toString() Method for Our Rectangle Class
public String toString() {

return this.width + " x " + this.height;
}

• Note: the method does not do any printing.

• It returns a String that can then be printed.

Revised Client Program

public class RectangleClient {
public static void main(String[] args) {

Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);

System.out.println("r1: " + r1);
System.out.println("area = " + r1.area());

System.out.println("r2: " + r2);
System.out.println("area = " + r2.area());

// grow both rectangles
r1.grow(50, 10);
r2.grow(5, 30);

System.out.println("r1: " + r1);
System.out.println("r2: " + r2);

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 266

Conventions for Accessors and Mutators

• Accessors:

• usually have no parameters

• all of the necessary info. is inside the called object

• have a non-void return type

• often have a name that begins with "get" or "is"

• examples: getWidth(), isSquare()

• but not always: area(), perimeter()

• Mutators:

• usually have one or more parameter

• usually have a void return type

• often have a name that begins with "set"

• examples: setLocation(), setWidth()

• but not always: grow(), scale()

The Implicit Parameter and Method Frames

• When we call an instance method, the implicit parameter
is included in its method frame.

• example: r1.grow(50, 10)

• The method uses this to access the fields in the called object.

• even if the code doesn't explicitly use it

width += dWidth; this.width += dWidth;
height += dHeight; this.height += dHeight;

height 50

width 100

y 20

x 10

dHeight 10

dWidth 50

grow

this

r1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 267

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• After the objects are created:

height 80

width 20

y 100

x 50
height 50

width 100

y 20

x 10

r2

r1

main

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• During the method call r1.grow(50, 10):

height 80

width 20

y 100

x 50
height 50

width 100

y 20

x 10

r2

r1

main

dHeight 10

dWidth 50

grow

this

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 268

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• After the method call r1.grow(50, 10):

height 80

width 20

y 100

x 50
height 60

width 150

y 20

x 10

r2

r1

main

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• During the method call r2.grow(5, 30):

height 80

width 20

y 100

x 50
height 60

width 150

y 20

x 10

r2

r1

main

dHeight 30

dWidth 5

grow

this

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 269

Example: Method Frames for Instance Methods
public class RectangleClient {

public static void main(String[] args) {
Rectangle r1 = new Rectangle(10, 20, 100, 50);
Rectangle r2 = new Rectangle(50, 100, 20, 80);
...
r1.grow(50, 10);
r2.grow(5, 30);
...

• After the method call r2.grow(5, 30):

height 110

width 25

y 100

x 50
height 60

width 150

y 20

x 10

r2

r1

main

Why Mutators Don't Need to Return Anything

• A mutator operates directly on the called object,
so any changes it makes will be there after the method returns.

• example: the call r2.grow(5, 30) from the last slide

• during this call, grow gets a copy of the reference in r2,
so it changes the object to which r2 refers

height 110

width 25

y 100

x 50
height 60

width 150

y 20

x 10

r2

r1

main

dHeight 30

dWidth 5

grow

this

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 270

Variable Scope: Static vs. Non-Static Methods
public class Foo {

private int x;

public static int bar(int b, int c, Foo f) {
c = c + this.x; // would not compile
return 3*b + f.x; // would compile

}

public int boo(int d, Foo f) {
d = d + this.x + f.x; // would compile
return 2 * d;

}
}

• Static methods (like bar above) do NOT have a called object,
so they can't access its fields.

• Instance/non-static methods (like boo above) do have a called
object, so they can access its fields.

• Any method of a class can access fields in an object of that class
that is passed in as a parameter (like the parameter f above).

A Common Use of the Implicit Parameter
• Here's our setLocation method:

public void setLocation(int newX, int newY) {
if (newX < 0 || newY < 0) {

throw new IllegalArgumentException();
}
this.x = newX;
this.y = newY;

}

• Here's an equivalent version:
public void setLocation(int x, int y) {

if (x < 0 || y < 0) {
throw new IllegalArgumentException();

}
this.x = x;
this.y = y;

}

• When the parameters have the same names as the fields,
we must use this to access the fields.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 271

Defining a Second Constructor
• Here's our Rectangle constructor:

public Rectangle(int initialX, int initialY,
int initialWidth, int initialHeight) {
this.setLocation(initialX, initialY);
this.setWidth(initialWidth);
this.setHeight(initialHeight);

}

• It requires four parameters:
Rectangle r1 = new Rectangle(10, 20, 100, 50);

• A class can have an arbitrary number of constructors,
provided that each of them has a distinct parameter list.

Defining a Second Constructor (cont.)

• Here's a constructor that only takes values for width and height:

public Rectangle(int width, int height) {
this.setWidth(width);
this.setHeight(height);
this.x = 0;
this.y = 0;

}

• it puts the rectangle at the location (0, 0)

• Equivalently, we can call the original constructor,
and let it perform the actual assignments:

public Rectangle(int width, int height) {
this(0, 0, width, height); // call other constr.

}

• we use the keyword this instead of Rectangle

• this is the way that one constructor calls another

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 272

Practice Exercise: Writing Client Code
• Write a static method called processRectangle() that:

• takes a Rectangle object (call it r) and an integer
(call it delta) as parameters

• prints the existing dimensions and area of the Rectangle
(hint: take advantage of the toString() method)

• increases both of the Rectangle's dimensions by delta

• prints the new dimensions and area

Collections of Data

• There are many situations in which we need a program
to maintain a collection of data.

• Examples include:

• all of the grades on a given assignment/exam

• a simple database of song info (e.g., in a music player)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 273

Using an Array for a Collection

• We've used an array to maintain a collection of primitive
data values.

• It's also possible to have an array of objects:

grades 7 8 9 6 10 7 9 5

suitNames

"clubs" "spades" "hearts" "diamonds"

A Class for a Collection

• Rather than just using an array, it's often helpful to create a
blueprint class for the collection.

• Example: a GradeSet class for a collection of grades from
a single assignment or exam

• possible field definitions:

public class GradeSet {
private String name;
private int possiblePoints;
private double[] grades;
private int gradeCount;

• The array of values is "inside" the collection object, along with
other relevant information associated with the collection.

• In addition, we would add methods for maintaining and
processing the collection.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 274

A Blueprint Class for Grade Objects

• Rather than just representing the grades as ints or doubles,
we'll use a separate blueprint class for a single grade:

public class Grade {
private double rawScore;
private int latePenalty; // as a percent

• This allows us to store both the raw score
and the late penalty (if any).

• Constructors and methods include:
Grade(double raw, int late)
Grade(double raw)
getRawScore()
getLatePenalty()
setRawScore(double newScore)
setLatePenalty(int newPenalty)
getAdjustedScore() // with late penalty

Revised GradeSet Class

public class GradeSet {
private String name;
private int possiblePoints;
private Grade[] grades;
private int gradeCount;

• Here's what one of these objects would look like in memory:

latePenalty 0

grades

gradeCount

nullnull

1

null

possiblePoints 30

nameq2

rawScore 26

…

"quiz 2"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 275

GradeSet Constructor/Methods

• Constructor:
GradeSet(String name, int possPts, int numGrades)

• Accessor methods:
String getName()
int getPossiblePoints()
int getGradeCount()
Grade getGrade(int i) // get grade at position i
double averageGrade(boolean includePenalty)

• Mutator methods:
void setName(String name)
void setPossiblePoints(int possPoints)
void addGrade(Grade g)
Grade removeGrade(int i) // remove grade at posn i

• Let's review the code for these, and write some of them
together.

GradeSet Constructor/Methods

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 276

GradeSet Constructor/Methods

GradeSet: Adding a Grade

grades

gradeCount

nullnullnull

0

null

possiblePoints 100

name "PS 4"ps4

GradeSet ps4 = new GradeSet("PS 4", 100, 4);
ps4.addGrade(new Grade(95, 0));
ps4.addGrade(new Grade(80, 10));

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 277

GradeSet: Adding a Grade

grades

gradeCount

nullnull

1

null

possiblePoints 100

name "PS 4"ps4

GradeSet ps4 = new GradeSet("PS 4", 100, 4);
ps4.addGrade(new Grade(95, 0));
ps4.addGrade(new Grade(80, 10));

latePenalty 0

rawScore 95

GradeSet: Adding a Grade

grades

gradeCount

null

2

null

possiblePoints 100

name "PS 4"ps4

GradeSet ps4 = new GradeSet("PS 4", 100, 4);
ps4.addGrade(new Grade(95, 0));
ps4.addGrade(new Grade(80, 10));

latePenalty 0

rawScore 95

latePenalty 10

rawScore 80

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 278

Inheritance and Polymorphism

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 5, Part 2

A Class for Modeling an Automobile
public class Automobile {

private String make;
private String model;
private int year;
private int mileage;
private String plateNumber;
private int numSeats;
private boolean isSUV;

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {

this.make = make;
this.model = model;
if (year < 1900) {

throw new IllegalArgumentException();
}
this.year = year;
this.numSeats = numSeats;
this.isSUV = isSUV;
this.mileage = 0;
this.plateNumber = "unknown";

}

public Automobile(String make, String model, int year) {
this(make, model, year, 5, false);

} // continued…

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 279

A Class for Modeling an Automobile (cont.)

public String getMake() {
return this.make;

}

public String getModel() {
return this.model;

}

public int getYear() {
return this.year;

}

public int getMileage() {
return this.mileage;

}

public String getPlateNumber() {
return this.plateNumber;

}

public int getNumSeats() {
return this.numSeats;

}

public boolean isSUV() {
return this.isSUV;

} // continued…

A Class for Modeling an Automobile (cont.)

public void setMileage(int newMileage) {
if (newMileage < this.mileage) {

throw new IllegalArgumentException();
}
this.mileage = newMileage;

}

public void setPlateNumber(String plate) {

this.plateNumber = plate;

}

public String toString() {
String str = this.make + " " + this.model;
str += "(" + this.numSeats + " seats)";
return str;

}
}

• There are no mutators for the other fields. Why not?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 280

Modeling a Related Class

• What if we now want to write a class to represent a taxi?

• The Taxi class will have the same fields and methods
as the Automobile class.

• It will also have its own fields and methods:
taxiID getID, setID
fareTotal getFareTotal, addFare
numFares getNumFares, getAverageFare

resetFareInfo

• We may also want the Taxi versions of some of the
Automobile methods to behave differently. Examples:

• we may want the toString method to include values
from different fields

• we may want the getNumSeats method to return only
the number of seats available for passengers

Inheritance

• To avoid redefining all of the Automobile fields and methods,
we specify that the Taxi class extends the Automobile class:

public class Taxi extends Automobile {

• The Taxi class will inherit the fields and methods of the
Automobile class.

• it doesn't have to redefine them

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 281

A Class for Modeling a Taxi
public class Taxi extends Automobile {

// We don't need to include the fields
// from Automobile!
private String taxiID;
private double fareTotal;
private int numFares;

// constructor goes here...

// We don't need to include the methods
// from Automobile!

public String getID() {
return this.taxiID;

}

public void addFare(double fare) {
if (fare < 0) {

throw new IllegalArgumentException();
}
this.fareTotal += fare;
this.numFares++;

}
...

Using Inherited Methods

• Because Taxi extends Automobile, we can invoke a method
defined in the Automobile class on a Taxi object.

• example:
Taxi t = new Taxi(…);
t.setMileage(25000);

• This works even though there is no setMileage method
defined in the Taxi class!

• Taxi inherits it from Automobile

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 282

Overriding an Inherited Method

• A class can override an inherited method, replacing it
with its own version.

• To override a method, the new method must have the same:

• return type

• name

• number and types of parameters

• Example: our Taxi class can define its own toString method:

public String toString() {
return "Taxi (id = " + this.taxiID + ")";

}

• it overrides the toString method inherited from Automobile

Rethinking Our Design

• What if we also want to be able to capture information
about other types of vehicles?

• motorcycles

• trucks

• The classes for these other vehicles should not inherit from
Automobile. Why not?

• Solution: define a Vehicle class

• fields and methods common to all vehicles are defined there

• leave automobile-specific state and behavior in Automobile

• everything else is inherited from Vehicle

• define Motorcycle and Truck classes that also inherit
from Vehicle

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 283

A Class for Modeling a Vehicle
public class Vehicle {

private String make;
private String model;
private int year;
private int mileage;
private String plateNumber;
private int numWheels; // this was not in Automobile

public Vehicle(String make, String model, int year,
int numWheels) {

this.make = make;
this.model = model;
if (year < 1900) {

throw new IllegalArgumentException();
}
this.year = year;
this.numWheels = numWheels;
this.mileage = 0;
this.plateNumber = "unknown";

}

public String getMake() {
return this.make;

}

// etc.

Revised Automobile Class
public class Automobile extends Vehicle {

// make, model, etc. are now inherited from Vehicle

// The following are specific to automobiles,
// so we leave them here.
private int numSeats;
private boolean isSUV;

// constructor goes here...

// getMake(), etc. are now inherited from Vehicle

// The following are specific to automobiles,
// so we leave them here.
public int getNumSeats() {

return this.numSeats;
}

public boolean isSUV() {
return this.isSUV;

}
...

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 284

Inheritance Hierarchy

• Inheritance leads classes to be organized in a hierarchy:

• A class in Java inherits directly from at most one class.

• However, a class can inherit indirectly from a class higher up
in the hierarchy.

• example: Taxi inherits indirectly from Vehicle

Vehicle

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Terminology

• When class C extends class D (directly or indirectly):

• class D is known as a superclass or base class of C

• super – comes above it in the hierarchy

• class C is known as a subclass or derived class of D

• sub – comes below it in the hierarchy

• Examples:

• Automobile is a superclass of
Taxi and Limosine

• Taxi is a subclass of
Automobile and Vehicle

Vehicle

TaxiLimousine

Automobile

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 285

Deciding Where to Define a Method

• Assume we only care about the number of axles in truck vehicles.

• Thus, we define the getNumAxles method in the Truck class,
rather than in the Vehicle class.

public int getNumAxles() {

return this.getNumWheels() / 2;
}

• it will be inherited by subclasses of Truck

• it won't be available to non-truck subclasses of Vehicle

• We override this method in the TractorTrailer class,
because tractor trailers have four wheels on all but the front axle:

public int getNumAxles() {
int numBackWheels = this.getNumWheels() – 2;

return 1 + numBackWheels/4;
}

What is Accessible From a Superclass?

• A subclass has direct access to the public fields and methods
of a superclass.

• A subclass does not have direct access to the private
fields and methods of a superclass.

• Example: we can think of an Automobile object as follows:

make

model

year

mileage

plateNumber

numSeats

isSUV

private fields inherited from Vehicle.
They cannot be accessed directly
by methods in Automobile.

fields defined in Automobile.
They can be accessed directly
by methods in Automobile.

numWheels

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 286

What is Accessible From a Superclass? (cont.)

• Example: now that make and model are defined in Vehicle,
we're no longer able to access them directly in the
Automobile version of toString:

public String toString() {
String str = this.make + " " + this.model;
str += " (" + this.numSeats + " seats)";
return str;

}

• Instead, we need to make method calls to access the
inherited fields:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

won't compile

What is Accessible From a Superclass? (cont.)

• Faulty approach: redefine the inherited fields in the subclass

public class Vehicle {
private String make;
private String model;
…

}

public class Automobile extends Vehicle {
private String make; // NOT a good idea!
private String model;
…

}

• You should NOT do this!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 287

Writing a Constructor for a Subclass

• Another example of illegally accessing inherited private fields:

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {

this.make = make;
this.model = model;
...

}

• To initialize inherited fields, a constructor should invoke
a constructor from the superclass.

public Automobile(String make, String model, int year,
int numSeats, boolean isSUV) {
super(make, model, year, 4); // 4 is for numWheels
this.numSeats = numSeats;
this.isSUV = isSUV;

}

• use the keyword super followed by appropriate
parameters for the superclass constructor

• must be done as the very first line of the constructor

Writing a Constructor for a Subclass (cont.)

• If a subclass constructor doesn't explicitly invoke a
superclass constructor, the compiler tries to insert a call
to the superclass constructor with no parameters.

• If there isn't such a constructor, we get a compile-time error.

• example: this constructor won't compile:

public Taxi(String make, String model, int year, String ID)
{

this.taxiID = ID;
}

• the compiler attempts to insert the following call:
super();

• there isn't an Automobile constructor with no parameters

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 288

The Object Class

• If a class doesn't explicitly extend another class,
it implicitly extends a special class called Object.

• Thus, the Object class is at the top of the class hierarchy.

• all classes are subclasses of this class

• the default toString and equals methods are defined
in this class

Motorcycle Automobile Truck

Object

String TemperatureVehicle

... ...

Inheritance in the Java API

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 289

More Examples of Method Overriding

• Vehicle inherits the fields and methods of Object.

• The inherited toString method isn't very helpful.

• We define a Vehicle version that overrides the inherited one:

public String toString() { // Vehicle version
String str = this.make + " " + this.model;
return str;

}

• When toString is invoked on a Vehicle object,
the Vehicle version is executed:

Vehicle v = new Vehicle("Radio Flyer",
"Classic Tricycle", 2002, 3);

System.out.println(v);

outputs: Radio Flyer Classic Tricycle

More Examples of Method Overriding (cont.)

• The Automobile class inherits the Vehicle version of
toString.

• If we didn't define a toString() method in Automobile,
the inherited version would be used.

• The Automobile version overrides the Vehicle version
so that the number of seats can be included in the string:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 290

Invoking an Overriden Method

• When a subclass overrides an inherited method, we can
invoke the inherited version by using the keyword super.

• Example: the Automobile version of toString() begins with
the same fields as the Vehicle version:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str += " (" + this.numSeats + " seats)";
return str;

}

• instead of calling the accessor methods, we can do this:
public String toString() {

String str = super.toString();
str += " (" + this.numSeats + " seats)";
return str;

}

• A square is a special type of rectangle.

• but the width and height must be the same

• Assume that we also want Square objects
to have a field for the unit of measurement (e.g., "cm").

• Square objects should mostly behave like Rectangle objects:
Rectangle r = new Rectangle(20, 30);
int area1 = r.area();

Square sq = new Square(40, "cm");
int area2 = sq.area();

• But there may be differences as well:

System.out.println(r);

System.out.println(sq);

output:
20 x 30

Another Example of Inheritance

output:
square with 40-cm sides

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 291

Another Example of Inheritance (cont.)
public class Rectangle {

private int width;
private int height;
...

public Rectangle(int initWidth, int initHeight) {
...

}

public int getWidth() {
...

}
... // other methods

}

public class Square extends Rectangle {
private String unit; // inherits other fields

public Square(int side, String unit) {
super(side, side);
this.unit = unit;

}

public String toString() { // overrides
String s = "square with ";
s += this.getWidth() + "-";
s += this.unit + " sides";
return s;

} // inherits other methods
}

Another Example of Inheritance (cont.)
public class Rectangle {

private int width;
private int height;
...

public Rectangle(int initWidth, int initHeight) {
...

}

public int getWidth() {
...

}
... // other methods

}

public class Square extends Rectangle {
private String unit; // inherits other fields

public Square(int side, String unit) {
super(side, side);
this.unit = unit;

}

public String toString() { // overrides
String s = "square with ";
s += this.getWidth() + "-";
s += this.unit + " sides";
return s;

} // inherits other methods
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 292

Another Example of Method Overriding

• The Rectangle class has the following mutator method:

public void setWidth(int w) {
if (w <= 0) {

throw new IllegalArgumentException();
}
this.width = w;

}

• The Square class inherits it. Why should we override it?

Which of these works?

A. // Square version, which overrides
// the version inherited from Rectangle
public void setWidth(int w) {

this.width = w;
this.height = w;

}

B. // Square version, which overrides
// the version inherited from Rectangle
public void setWidth(int w) {

this.setWidth(w);
this.setHeight(w);

}

C. either version would work

D. neither version would work

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 293

Accessing Methods from the Superclass

• The solution: use super to access the inherited version
of the method – the one we are overriding:

// Square version
public void setWidth(int w) {

super.setWidth(w); // call the Rectangle version
super.setHeight(w);

}

• Only use super if you want to call a method from
the superclass that has been overridden.

• If the method has not been overridden, use this as usual.

Accessing Methods from the Superclass

• We need to override all of the inherited mutators:

// Square versions
public void setWidth(int w) {

super.setWidth(w);
super.setHeight(w);

}

public void setHeight(int h) {
super.setWidth(h);
super.setHeight(h);

}

public void grow(int dw, int dh) {
if (dw != dh) {

throw new IllegalArgumentException();
}
super.setWidth(this.getWidth() + dw);
super.setHeight(this.getHeight() + dh);

}
getWidth() and getHeight()
are not overridden, so we use this.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 294

is-a Relationships

• We use inheritance to capture is-a relationships.

• an automobile is a vehicle

• a taxi is an automobile

• a tractor trailer is a truck

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Object

Vehicle

has-a Relationships

• Another type of relationship is a has-a relationship.

• one type of object "owns" another type of object

• example: a driver has a vehicle

• Inheritance should not be used to capture has-a relationships.

• it does not make sense to make the Driver class
a subclass of Vehicle

• Instead, we give the "owner" object a field that refers to
the "owned" object:

public class Driver {
String name;
String ID;
Vehicle v;
...

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 295

Polymorphism

• We've been using reference variables like this:

Automobile a = new Automobile("Ford", "Model T", …);

• variable a is declared to be of type Automobile

• it holds a reference to an Automobile object

• In addition, a reference variable of type T can hold a reference
to an object from a subclass of T:

Automobile a = new Taxi("Ford", "Tempo", …);

• this works because Taxi is a subclass of Automobile

• a taxi is an automobile!

• The name for this feature of Java is polymorphism.

• from the Greek for “many forms”

• the same code can be used with objects of different types!

Polymorphism and Collections of Objects

• Polymorphism is useful when we have a collection of objects
of different but related types.

• Example:

• let's say that a company has a collection of vehicles
of different types

• we can store all of them in an array of type Vehicle:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", …);
fleet[1] = new Motorcycle("Harley", ...);
fleet[2] = new TractorTrailer("Mack", ...);
fleet[3] = new Taxi("Ford", …);
fleet[4] = new Truck("Dodge", …);

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 296

Processing a Collection of Objects

• We can determine the average age of the vehicles in the
company's fleet by doing the following:

int totalAge = 0;
for (int i = 0; i < fleet.length; i++) {

int age = CURRENT_YEAR - fleet[i].getYear();
totalAge += age;

}
double averageAge = (double)totalAge / fleet.length;

• We can invoke getYear() on each object in the array,
regardless of its type.

• they are instances of Vehicle or a subclass of Vehicle

• thus, they must all have a getYear() method

Practice with Polymorphism

• Which of these assignments would be allowed?
Vehicle v1 = new Motorcycle(…);
TractorTrailer t1 = new Truck(…);
Truck t2 = new MovingVan(…);
Taxi t3 = new Automobile(…);
Vehicle v2 = new TractorTrailer(…);
MovingVan m1 = new TractorTrailer(…);

Motorcycle Truck

TaxiLimousine TractorTrailerMovingVan

Automobile

Object

Vehicle

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 297

Declared Type vs. Actual Type
• An object's declared type may not match its actual type:

• declared type: type specified when declaring a variable

• actual type: type specified when creating an object

• Recall this client code:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", 2005);
fleet[1] = new Motorcycle("Harley", …);
fleet[2] = new TractorTrailer("Mack", …);

• Here are the types:

object declared type actual type
fleet[0] Vehicle Automobile

fleet[1] Vehicle Motorcycle

fleet[2] Vehicle TractorTrailer

• The compiler uses the declared type of an object
to determine if a method call is valid.

• starts at the declared type, and goes up
the inheritance hierarchy as needed
looking for a version of the method

• if it can't find a version, the method call
will not compile

• Example: the following would not work:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack",…);
...
System.out.println(fleet[2].getNumAxles());

• the declared type of fleet[2] is Vehicle

• there's no getNumAxles() method defined in
or inherited by Vehicle

Determining if a Method Call is Valid

Vehicle

Truck

TractorTrailer

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 298

• In such cases, we can use casting to create a reference with
the necessary declared type:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack", …);
...
TractorTrailer t = (TractorTrailer)fleet[2];

• The following will work:
System.out.println(t.getNumAxles());

• the declared type of t is TractorTrailer

• there is a getNumAxles() method defined in
TractorTrailer, so the compiler is happy

Determining if a Method Call is Valid (cont.)

Determining Which Method to Execute

• Truck also has a getNumAxles method, so this would be
another way to handle the previous problem:

Vehicle[] fleet = new Vehicle[5];
...
fleet[2] = new TractorTrailer("Mack", …);
...
Truck t2 = (Truck)fleet[2];
System.out.println(t2.getNumAxles());

• The object represented by t2 has:

• a declared type of ______________

• an actual type of _______________

• Both Truck and TractorTrailer have a getNumAxles.
Which version will be executed?

• More generally, how does the interpreter decide which version
of a method should be used?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 299

Dynamic Binding

• At runtime, the Java interpreter selects the version of a method
that is appropriate to the actual type of the object.

• starts at the actual type, and goes up the inheritance
hierarchy as needed until it finds a version of the method

• known as dynamic binding

• Given the code from the previous slide

Vehicle[] fleet = new Vehicle[5]
...
fleet[2] = new TractorTrailer("Mack", …);
...
Truck t2 = (Truck)fleet[2];

System.out.println(t2.getNumAxles());

the TractorTrailer version of getNumAxles would be run

• TractorTrailer is the actual type of t2, and that class has
its own version of getNumAxles

Dynamic Binding (cont.)

• Another example:
public static void printFleet(Vehicle[] fleet) {

for (int i = 0; i < fleet.length; i++) {
System.out.println(fleet[i]);

}
}

• the toString() method is implicitly invoked on each
element of the array when we go to print it.

• the appropriate version is selected by dynamic binding

• note: the selection must happen at runtime, because
the actual types of the objects may not be known when
the code is compiled

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 300

Dynamic Binding (cont.)

• Recall our initialization of the array:

Vehicle[] fleet = new Vehicle[5];
fleet[0] = new Automobile("Honda", "Civic", …);
fleet[1] = new Motorcycle("Harley", …);
fleet[2] = new TractorTrailer("Mack", …);
...

• System.out.println(fleet[0]); will invoke the
Automobile version of the toString() method.

• Motorcycle does not define its own toString() method,
so System.out.println(fleet[1]); will invoke the Vehicle
version of toString(), which is inherited by Motorcycle.

• TractorTrailer does not define its own toString()

but Truck does, so System.out.println(fleet[2]);

will invoke the Truck version of toString(), which is inherited
by TractorTrailer.

Dynamic Binding (cont.)

• Dynamic binding also applies to method calls on the
called object that occur within other methods.

• Example: the Truck class has the following toString method:

public String toString() {
String str = this.getMake() + " " +

this.getModel();
str = str + ", capacity = " + this.capacity;
str = str + ", " + this.getNumAxles() + " axles";
return str;

}

• The TractorTrailer class inherits it and does not override it.

• When toString is called on a TractorTrailer object:

• this Truck version of toString() will run

• the TractorTrailer version of getNumAxles()
will run when the code above is executed

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 301

The Power of Polymorphism

• Recall our printFleet method:
public static void printFleet(Vehicle[] fleet) {

for (int i = 0; i < fleet.length; i++) {
System.out.println(fleet[i]);

}
}

• polymorphism allows this method to use a single println
statement to print the appropriate info. for any kind of vehicle.

• Without polymorphism, we would need a large if-else-if:
if (fleet[i] is an Automobile) {

print the appropriate info for Automobiles
} else if (fleet[i] is a Truck) {

print the appropriate info for Trucks
} else if ...

• Polymorphism allows us to easily write code that works for
more than one type of object.

Polymorphism and the Object Class

• The Object class is a superclass of every other class.

• Thus, we can use an Object variable to store a reference
to any object.

Object o1 = "Hello World";
Object o2 = new Temperature(20, 'C');
Object o3 = new Taxi("Ford", "Tempo", 2000, "T253");

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 302

Summary and Extra Practice

• To determine if a method call is valid:

• start at the declared type

• go up the hierarchy as needed to see if you can find the
specified method in the declared type or a superclass

• if you don't find it, the method call is not valid

• Given the following:
TractorTrailer t1 = new TractorTrailer(…);
Vehicle v = new Truck(…);
MovingVan m = new MovingVan(…);
Truck t2 = new TractorTrailer(…);

• Which of the following are valid?
v.getNumAxles()
m.getNumAxles()
t1.getMake()
t1.isSleeper()
t2.isSleeper()

Truck
getNumAxles

TractorTrailer
getNumAxles
isSleeper

MovingVan

Vehicle
getMake

Summary and Extra Practice (cont.)

• To determine which version of a method will run (dynamic binding):

• start at the actual type

• go up the hierarchy as needed until you find the method

• the first version you encounter is the one that will run

• Given the following:
TractorTrailer t1 = new TractorTrailer(…);
Vehicle v = new Truck(…);
MovingVan m = new MovingVan(…);
Truck t2 = new TractorTrailer(…);

• Which version of the method will run?
m.getNumAxles()
t1.getNumAxles()
t2.getNumAxles()
v.getMake()
t2.getMake()

Truck
getNumAxles

TractorTrailer
getNumAxles
isSleeper

MovingVan

Vehicle
getMake

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 303

More Practice
public class E extends G {

public void method2() {
System.out.print("E 2 ");
this.method1();

}
public void method3() {

System.out.print("E 3 ");
this.method1();

}
}
public class F extends G {

public void method2() {
System.out.print("F 2 ");

}
}
public class G {

public void method1() {
System.out.print("G 1 ");

}
public void method2() {

System.out.print("G 2 ");
}

}
public class H extends E {

public void method1() {
System.out.print("H 1 ");

}
}

More Practice (cont.)

• Which of these would compile and which would not?
E e1 = new E();

E e2 = new H();

E e3 = new G();

E e4 = new F();

G g1 = new H();

G g2 = new F();

H h1 = new H();

• To answer these questions, draw the inheritance hierarchy:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 304

Here are the classes again…
public class E extends G {

public void method2() {
System.out.print("E 2 ");
this.method1();

}
public void method3() {

System.out.print("E 3 ");
this.method1();

}
}
public class F extends G {

public void method2() {
System.out.print("F 2 ");

}
}
public class G {

public void method1() {
System.out.print("G 1 ");

}
public void method2() {

System.out.print("G 2 ");
}

}
public class H extends E {

public void method1() {
System.out.print("H 1 ");

}
}

More Practice (cont.)
E e1 = new E();
G g1 = new H();
G g2 = new F();

• Which of the following would compile and which would not?
For the ones that would compile, what is the output?

e1.method1();

e1.method2();

e1.method3();

g1.method1();

g1.method2();

g1.method3();

g2.method1();

g2.method2();

g2.method3();

G
method1
method2

F
method2

E
method2
method3

H
method1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 305

Abstract Data Types
and Data Structures

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 6, Part 1

Congrats on completing the first half!

• In the second half, we will study fundamental data structures.

• ways of imposing order on a collection of information
• sequences: lists, stacks, and queues
• trees
• hash tables
• graphs

• We will also:

• study algorithms related to these data structures

• learn how to compare data structures & algorithms

• Goals:

• learn to think more intelligently about programming problems
• acquire a set of useful tools and techniques

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 306

Sample Problem I: Finding Shortest Paths

• Given a set of routes between pairs of cities, determine the
shortest path from city A to city B.

BOSTON

PORTSMOUTH

PORTLAND

CONCORD

WORCESTERALBANY

PROVIDENCE

NEW YORK

84

74
83

49

54

49

185

42

44134

63

Sample Problem II: A Data "Dictionary"

• Given a large collection of data, how can we arrange it
so that we can efficiently:

• add a new item

• search for an existing item

• Some data structures provide better performance than others
for this application.

• More generally, we’ll learn how to characterize the efficiency
of different data structures and their associated algorithms.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 307

Example of Comparing Algorithms

• Consider the problem of finding a phone number in a
phonebook.

• Let’s informally compare the time efficiency of two algorithms
for this problem.

Algorithm 1 for Finding a Phone Number

findNumber(person) {
for (p = number of first page; p <= number of the last page; p++) {

if person is found on page p {
return the person's phone number

}
}
return NOT_FOUND

}

• If there were 1,000 pages in the phonebook, how many pages
would this look at in the worst case?

• What if there were 1,000,000 pages?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 308

Algorithm 2 for Finding a Phone Number
findNumber(person) {

min = the number of the first page
max = the number of the last page
while (min <= max) {

mid = (min + max) / 2 // page number of the middle page
if person is found on page mid {

return the person's number
} else if the person’s name comes earlier in the book {

max = mid – 1
} else {

min = mid + 1
}

}
return NOT_FOUND

}

• If there were 1,000 pages in the phonebook, how many pages
would this look at in the worst case?

• What if there were 1,000,000 pages?

Searching a Collection of Data
• The phonebook problem is one example of a common task:

searching for an item in a collection of data.

• another example: searching for a record in a database

• Algorithm 1 is known as sequential search.

• also called linear search

• Algorithm 2 is known as binary search.

• only works if the items in the data collection are sorted

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 309

Abstract Data Types

• An abstract data type (ADT) is a model of a data structure
that specifies:

• the characteristics of the collection of data

• the operations that can be performed on the collection

• It’s abstract because it doesn’t specify how the ADT will be
implemented.

• does not commit to any low-level details

• A given ADT can have multiple implementations.

A Simple ADT: A Bag

• A bag is just a container for a group of data items.

• analogy: a bag of candy

• The positions of the data items don’t matter (unlike a list).

• {3, 2, 10, 6} is equivalent to {2, 3, 6, 10}

• The items do not need to be unique (unlike a set).

• {7, 2, 10, 7, 5} isn’t a set, but it is a bag

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 310

A Simple ADT: A Bag (cont.)

• The operations we want a Bag to support:

• add(item): add item to the Bag

• remove(item): remove one occurrence of item (if any)
from the Bag

• contains(item): check if item is in the Bag

• numItems(): get the number of items in the Bag

• grab(): get an item at random, without removing it

• reflects the fact that the items don’t have a position
(and thus we can’t say "get the 5th item in the Bag")

• toArray(): get an array containing the current contents
of the bag

• We want the bag to be able to store objects of any type.

Specifying an ADT Using an Interface

• In Java, we can use an interface to specify an ADT:

public interface Bag {
boolean add(Object item);
boolean remove(Object item);
boolean contains(Object item);
int numItems();
Object grab();
Object[] toArray();

}

• An interface specifies a set of methods.

• includes only the method headers

• does not typically include the full method definitions

• Like a class, it must go in a file with an appropriate name.

• in this case: Bag.java

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 311

Implementing an ADT Using a Class

• To implement an ADT, we define a class:

public class ArrayBag implements Bag {
…
public boolean add(Object item) {

…

}

• When a class header includes an implements clause,
the class must define all of the methods in the interface.

• if the class doesn't define them, it won't compile

All Interface Methods Are Public

• Methods specified in an interface must be public,
so we don't use the keyword public in the definition:

public interface Bag {
boolean add(Object item);
boolean remove(Object item);
boolean contains(Object item);
int numItems();
Object grab();
Object[] toArray();

}

• However, when we actually implement the methods
in a class, we do need to use public:

public class ArrayBag implements Bag {
…
public boolean add(Object item) {

…

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 312

One Possible Bag Implementation

• One way to store the items in the bag is to use an array:
public class ArrayBag implements Bag {

private ______________[] items;

...
}

• What type should the array be?

• This allows us to store any type of object in the items array,
thanks to the power of polymorphism:

ArrayBag bag = new ArrayBag();
bag.add("hello");
bag.add(new Rectangle(20, 30));

• How could we keep track of how many items are in a bag?

Another Example of Polymorphism

• An interface name can be used as the type of a variable:

Bag b;

• Variables with an interface type can refer to objects
of any class that implements the interface:

Bag b = new ArrayBag();

• Using the interface as the type allows us to write code
that works with any implementation of an ADT:

public void processBag(Bag b) {
for (int i = 0; i < b.numItems(); i++) {

…

}

• the param can be an instance of any Bag implementation

• we must use method calls to access the object's internals,
because the fields are not part of the interface

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 313

Memory Management: Looking Under the Hood

• To understand how data structures are implemented,
you need to understand how memory is managed.

• There are three main types of memory allocation in Java.

• They correspond to three different regions of memory.

Memory Management, Type I: Static Storage

• Static storage is used for class variables, which are declared
outside any method using the keyword static:

public class MyMethods {
public static int numCompares;
public static final double PI = 3.14159;

• There is only one copy of each class variable.

• shared by all objects of the class

• Java's version of a global variable

• The Java runtime allocates memory for class variables
when the class is first encountered.

• this memory stays fixed for the duration of the program

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 314

Memory Management, Type II: Stack Storage

• Method parameters and local variables are stored in a region
of memory known as the stack.

• For each method call, a new stack frame is added to the top
of the stack.

public class Foo {
public static int x(int i) {

int j = i - 2;
if (i >= 6) {

return i;
}
return x(i + j);

}
public static void

main(String[] args) {
System.out.println(x(5));

}
}

• When a method completes, its stack frame is removed.

args

3

5

return addr

i

j

6

8

return addr

i

j

x(8)

x(5)

Memory Management, Type III: Heap Storage

• Objects are stored in a memory region known as the heap.

• Memory on the heap is allocated using the new operator:

int[] values = new int[3];
ArrayBag b = new ArrayBag();

• new returns the memory address of the start of the object
on the heap.

• a reference!

• An object stays on the heap until there are no remaining
references to it.

• Unused objects are automatically reclaimed by a process
known as garbage collection.

• makes their memory available for other objects

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 315

Two Constructors for the ArrayBag Class
public class ArrayBag implements Bag {

private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;

}
public ArrayBag(int maxSize) {
...

}

• As we've seen before, we can have multiple constructors.
• the parameters must differ in some way

• The first one is useful for small bags.
• creates an array with room for 50 items.

• The second one allows the client to specify the max # of items.

Two Constructors for the ArrayBag Class
public class ArrayBag implements Bag {

private Object[] items;
private int numItems;
public static final int DEFAULT_MAX_SIZE = 50;

public ArrayBag() {
this.items = new Object[DEFAULT_MAX_SIZE];
this.numItems = 0;

}
public ArrayBag(int maxSize) {

if (maxSize <= 0) {
throw new IllegalArgumentException(
"maxSize must be > 0");

}
this.items = new Object[maxSize];
this.numItems = 0;

}
...

}

• If the user inputs an invalid maxSize, we throw an exception.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 316

Example: Creating Two ArrayBag Objects

args

…

b1

b2

stack heap

items

0

nullnull
numItems

2maxSize

// client
public static void main(String[] args) {

ArrayBag b1 = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);

…
}

// constructor
public ArrayBag(int maxSize) {

... // error-checking
this.items = new Object[maxSize];
this.numItems = 0;

}

Example: Creating Two ArrayBag Objects
public static void main(String[] args) {

ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• After the objects have been created, here’s what we have:

args

…

b1

b2

stack heap

items

0

nullnull
numItems

items

numItems

nullnullnull

0

null

// client
public static void main(String[] args) {

ArrayBag b1 = new ArrayBag(2);
ArrayBag b2 = new ArrayBag(4);

…
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 317

Adding Items

• We fill the array from left to right. Here's an empty bag:

• After adding the first item:

• After adding the second item:

items

numItems 0

nullnullnullnull

items

numItems 1

"hello, world"

nullnullnull

items

numItems 2

"hello, world" "howdy"

nullnull

Adding Items (cont.)

• After adding the third item:

• After adding the fourth item:

• At this point, the ArrayBag is full!

• it's non-trivial to "grow" an array, so we don't!

• additional items cannot be added until one is removed

items

numItems 3

null

items

numItems 4

"hello, world" "howdy" "bye" "see ya!"

"hello, world" "howdy" "bye"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 318

A Method for Adding an Item to a Bag
public class ArrayBag implements Bag {

private Object[] items;
private int numItems;
...
public boolean add(Object item) {

if (item == null) {
throw new IllegalArgumentException("no nulls");

} else if (this.numItems == this.items.length) {
return false; // no more room!

} else {
this.items[this.numItems] = item;
this.numItems++;
return true; // success!

}
}
...

}
items

numItems 4

"hello, world" "howdy" "bye" "see ya!"

• takes an object of any type!
• returns a boolean to

indicate if the operation
succeeded

A Method for Adding an Item to a Bag
public class ArrayBag implements Bag {

private Object[] items;
private int numItems;
...
public boolean add(Object item) {

if (item == null) {
throw new IllegalArgumentException("no nulls");

} else if (this.numItems == this.items.length) {
return false; // no more room!

} else {
this.items[this.numItems] = item;
this.numItems++;
return true; // success!

}
}
...

}

• Initially, this.numItems is 0, so the first item goes in position 0.

• We increase this.numItems because we now have 1 more item.
• and so the next item added will go in the correct position!

• takes an object of any type!
• returns a boolean to

indicate if the operation
succeeded

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 319

Example: Adding an Item
public static void main(String[] args) {

String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack heap
items

numItems

nullnullnull

0

null

public boolean add(Object item) {
…
else {

this.items[this.numItems] = item;
this.numItems++;
return true;

} …

"hello, world"

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• add's stack frame includes:
• item, which stores…
• this, which stores…

Example: Adding an Item (cont.)

public static void main(String[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack
items

numItems

nullnullnull

0

nullthis

"hello, world"

item

heap

public boolean add(Object item) {
…
else {

this.items[this.numItems] = item;
this.numItems++;
return true;

} …

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 320

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• The method modifies the items array and numItems.
• note that the array holds a copy of the reference to the item,

not a copy of the item itself.

Example: Adding an Item (cont.)

public static void main(String[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack
items

numItems

nullnull

1

nullthis

"hello, world"

item

heap

public boolean add(Object item) {
…
else {

this.items[this.numItems] = item;
this.numItems++;
return true;

} …

public static void main(String[] args) {
ArrayBag b1 = new ArrayBag(2);

ArrayBag b2 = new ArrayBag(4);
…

}

• After the method call returns, add's stack frame is removed
from the stack.

Example: Adding an Item (cont.)

public static void main(String[] args) {
String message = "hello, world";
ArrayBag b = new ArrayBag(4);
b.add(message);
…

}

args …
message

b

stack
items

numItems

nullnull

1

null

"hello, world"

heap

public boolean add(Object item) {
…
else {

this.items[this.numItems] = item;
this.numItems++;
return true;

} …

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 321

Extra Practice: Determining if a Bag Contains an Item

• Let’s write the ArrayBag contains() method together.

• should return true if an object equal to item is found,
and false otherwise.

_________________ contains(_____________ item) {

}

items

numItems 3

"hello, world"

null null null null …

"oh my!" "what's in the bag?"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 322

Would this work instead?

• Let’s write the ArrayBag contains() method together.

• should return true if an object equal to item is found,
and false otherwise.

public boolean contains(Object item) {
for (int i = 0; i < this.items.length; i++) {

if (this.items[i].equals(item)) { // not ==
return true;

}
}
return false;

}

items

numItems 3

"hello, world"

null null null null …

"oh my!" "what's in the bag?"

Another Incorrect contains() Method
public boolean contains(Object item) {

for (int i = 0; i < this.numItems; i++) {
if (this.items[i].equals(item)) {

return true;
} else {

return false;
}

}
return false;

}

• What's the problem with this?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 323

A Method That Takes a Bag as a Parameter
public boolean containsAll(Bag otherBag) {

if (otherBag == null || otherBag.numItems() == 0) {
return false;

}

Object[] otherItems = otherBag.toArray();
for (int i = 0; i < otherItems.length; i++) {

if (! this.contains(otherItems[i])) {
return false;

}
}

return true;
}

• We use Bag instead of ArrayBag as the type of the parameter.

• allows this method to be part of the Bag interface

• allows us to pass in any object that implements Bag

• We must use methods in the interface to manipulate otherBag.

• we can't use the fields, because they're not in the interface

A Type Mismatch

• Here are the headers of two ArrayBag methods:

public boolean add(Object item)
public Object grab()

• Polymorphism allows us to pass String objects into add():

ArrayBag stringBag = new ArrayBag();
stringBag.add("hello");
stringBag.add("world");

• However, this will not work:
String str = stringBag.grab(); // compiler error

• the return type of grab() is Object

• Object isn’t a subclass of String, so polymorphism doesn't help!

• Instead, we need to use a type cast:
String str = (String)stringBag.grab();

• this cast doesn't actually change the value being assigned

• it just reassures the compiler that the assignment is okay

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 324

Recursion Revisited;
Recursive Backtracking

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 6, Part 2

Review: Recursive Problem-Solving

• When we use recursion, we reduce a problem to
a simpler problem of the same kind.

• We keep doing this until we reach a problem that is
simple enough to be solved directly.

• This simplest problem is known as the base case.

public static void printSeries(int n1, int n2) {
if (n1 == n2) { // base case

System.out.println(n2);
} else {

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• The base case stops the recursion, because it doesn't
make another call to the method.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 325

Review: Recursive Problem-Solving (cont.)

• If the base case hasn't been reached, we execute the
recursive case.

public static void printSeries(int n1, int n2) {
if (n1 == n2) { // base case

System.out.println(n2);
} else { // recursive case

System.out.print(n1 + ", ");
printSeries(n1 + 1, n2);

}
}

• The recursive case:

• reduces the overall problem to one or more simpler problems
of the same kind

• makes recursive calls to solve the simpler problems

Raising a Number to a Power

• We want to write a recursive method to compute

xn = x*x*x*…*x

where x and n are both integers and n >= 0.

• Examples:

• 210 = 2*2*2*2*2*2*2*2*2*2 = 1024

• 105 = 10*10*10*10*10 = 100000

• Computing a power recursively: 210 = 2*29

= 2*(2 * 28)
= …

• Recursive definition: xn = x * xn-1 when n > 0
x 0 = 1

n of them

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 326

Power Method: First Try
public static int power1(int x, int n) {

if (n < 0) {
throw new IllegalArgumentException();

} else if (n == 0) {
return 1;

} else {
int pow_rest = power1(x, n-1);
return x * pow_rest;

}
}

Example: power1(5,3)
x 5 n 0

x 5 n 1

x 5 n 2

x 5 n 3

x 5 n 1

x 5 n 2

x 5 n 3

x 5 n 2

x 5 n 3x 5 n 3

x 5 n 1

x 5 n 2

x 5 n 3

x 5 n 2

x 5 n 3 x 5 n 3

return 1

return 5*1

return 5*5

return 5*25
time

Power Method: Second Try

• There’s a better way to break these problems into subproblems.
For example: 210 = (2*2*2*2*2)*(2*2*2*2*2)

= (25) * (25) = (25)2

• A more efficient recursive definition of xn (when n > 0):
xn = (xn/2)2 when n is even
xn = x * (xn/2)2 when n is odd (using integer division for n/2)

public static int power2(int x, int n) {
// code to handle n < 0 goes here...

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 327

Analyzing power2

• How many method calls would it take to compute 21000 ?

power2(2, 1000)
power2(2, 500)

power2(2, 250)
power2(2, 125)

power2(2, 62)
power2(2, 31)

power2(2, 15)
power2(2, 7)

power2(2, 3)
power2(2, 1)

power2(2, 0)

• Much more efficient than
power1() for large n.

• It can be shown that
it takes approx. log2n
method calls.

An Inefficient Version of power2

• What's wrong with the following version of power2()?

public static int power2(int x, int n) {
// code to handle n < 0 goes here...
if (n == 0) {

return 1;
} else {

// int pow_rest = power2(x, n/2);
if (n % 2 == 0) {

return power2(x, n/2) * power2(x, n/2);
} else {

return x * power2(x, n/2) * power2(x, n/2);
}

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 328

Review: Processing a String Recursively

• A string is a recursive data structure. It is either:

• empty ("")

• a single character, followed by a string

• Thus, we can easily use recursion to process a string.

• process one or two of the characters ourselves

• make a recursive call to process the rest of the string

• Example: print a string vertically, one character per line:

public static void printVertical(String str) {
if (str == null || str.equals("")) {

return;
}

System.out.println(str.charAt(0)); // first char
printVertical(str.substring(1)); // rest of string

}

Removing Vowels From a String

• removeVowels(s) - removes the vowels from the string s,
returning its "vowel-less" version!

removeVowels("recursive") should return "rcrsv"

removeVowels("vowel") should return "vwl"

• Can we take the usual approach to recursive string processing?

• base case: empty string

• delegate s.substring(1) to the recursive call

• we're responsible for handling s.charAt(0)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 329

Applying the String-Processing Template

public static String removeVowels(String s) {
if (s.equals("")) { // base case

return __________;
} else { // recursive case

String remRest = __________________;
// do our one step!

}
}

Consider Concrete Cases

removeVowels("after") # first char is a vowel

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem?
What is our one step?

removeVowels("recurse") # first char is not a vowel

• what is its solution?

• what is the next smaller subproblem?

• what is the solution to that subproblem?

• how can we use the solution to the subproblem?
What is our one step?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 330

removeVowels()

public static String removeVowels(String s) {
if (s.equals("")) { // base case

return "";
} else { // recursive case

String remRest = removeVowels(s.substring(1));
if ("aeiou".indexOf(s.charAt(0)) != -1) {

} else {

}

}
}

The n-Queens Problem

• Goal: to place n queens on an n x n chessboard
so that no two queens occupy:

• the same row

• the same column

• the same diagonal.

• Sample solution for n = 8:

• This problem can be solved using a technique called
recursive backtracking.

Q

Q

Q

Q

Q

Q

Q

Q

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 331

Recursive Strategy for n-Queens

• findSolution(row) – to place a queen in the specified row:

• try one column at a time, looking for a "safe" one

• if we find one: – place the queen there
– make a recursive call to go to the next row

• if we can’t find one: – backtrack by returning from the call
– try to find another safe column

in the previous row

• Example:
• row 0:

• row 1: Q Q

Q

Q

Q

col 0: same col col 1: same diag col 2: safe

col 0: safe

Q

Q

4-Queens Example (cont.)

• row 2:

• We’ve run out of columns in row 2!

• Backtrack to row 1 by returning from the recursive call.
• pick up where we left off

• we had already tried columns 0-2, so now we try column 3:

• Continue the recursion as before.

Q

Q

Q

Q

Q

Q

Q

Q

col 0: same col col 1: same diag

Q

Q

Q

col 3: same diag

Q Q

Q

we left off in col 2 try col 3: safe

Q

col 2: same col/diag

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 332

4-Queens Example (cont.)

• row 2:

• row 3:

• Backtrack to row 2:

• Backtrack to row 1. No columns left, so backtrack to row 0!

Q

Q

Q

Q

Q

col 0: same col col 1: safe

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

col 0: same col/diag col 2: same diag

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

we left off in col 1 col 2: same diag col 3: same col

Q

Q

col 3: same col/diagcol 1: same col/diag

Q

Q

Q

Q

4-Queens Example (cont.)

• row 0:

• row 1:

• row 2:

• row 3:

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

A solution!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 333

A Blueprint Class for an N-Queens Solver
public class NQueens {

private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

}

...

• Here's what the object
looks like initially:

board

//other fields

NQueens object

false false false false

false false false false

false false false false

false false false false

A Blueprint Class for an N-Queens Solver
public class NQueens {

private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

}

private void placeQueen(int row, int col) {
this.board[row][col] = true;
// modify other fields here...

}

• Here's what it looks like
after placing some queens:

Q

Q

Q

true false false false

false false false true

false true false false

false false false false

board

//other fields

NQueens object

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 334

A Blueprint Class for an N-Queens Solver
public class NQueens {

private boolean[][] board; // state of the chessboard
// other fields go here...

public NQueens(int n) {
this.board = new boolean[n][n];
// initialize other fields here...

}

private void placeQueen(int row, int col) {
this.board[row][col] = true;
// modify other fields here...

}

private void removeQueen(int row, int col){
this.board[row][col] = false;
// modify other fields here...

}

private boolean isSafe(int row, int col) {
// returns true if [row][col] is "safe", else false

}

private boolean findSolution(int row) {
// see next slide!

...

private helper methods
that will only be called
by code within the class.

Making them private
means we don't need
to do error-checking!

Recursive-Backtracking Method
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

• takes the index of a row (initially 0)

• uses a loop to consider all possible columns in that row

• makes a recursive call to move onto the next row

• returns true if a solution has been found; false otherwise

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 335

Tracing findSolution()
private boolean findSolution(int row) {

if (row == this.board.length) {
// code to process a solution goes here...

}
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 1
col: 0,1,2

row: 0
col: 0

row: 0
col: 0

row: 2
col: 0,1

row: 1
col: 0,1,2,3

row: 0
col: 0

backtrack!
row: 2
col:0,1,2,3,4
return false

row: 1
col: 0,1,2

row: 0
col: 0

We can pick up
where we left off,
because row and
col are stored in
the stack frame!

row: 1
col: 0,1,2

row: 0
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 0

Q

Q

Q

row: 3
col:0,1,2,3,4
return false

row: 2
col: 0,1

row: 1
col: 0,1,2,3

row: 0
col: 0

backtrack!

…

Note: row++
will not work
here!

Once we place a queen in the last row…
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

…

Q

Q

Q

Q

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 336

private boolean findSolution(int row) {
if (row == this.board.length) {

this.displayBoard();
return true;

}
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…

Q

Q

Q

Q

row: 4

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…we make one more recursive call…

…and hit the base case!
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) {

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…

Q

Q

Q

Q

row: 4
return true

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 337

true is sent back…
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) { // if (true)

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…

Q

Q

Q

Q

row: 4
return true

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

...and all the earlier calls also return true!
private boolean findSolution(int row) {

if (row == this.board.length) {
this.displayBoard();
return true;

}
for (int col = 0; col < this.board.length; col++) {

if (this.isSafe(row, col)) {
this.placeQueen(row, col);
if (this.findSolution(row + 1)) { // if (true)

return true;
}
this.removeQueen(row, col);

}
}
return false;

}

time

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

…

Q

Q

Q

Q

row: 4
return true

row: 3
col:0,1,2

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

row: 3
col:0,1,2
return true

row: 2
col: 0

row: 1
col: 0,1,2,3

row: 0
col: 1

row: 2
col: 0
return true

row: 1
col: 0,1,2,3

row: 0
col: 1

…

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 338

Using a "Wrapper" Method

• The key recursive method is private:

private boolean findSolution(int row) {
...

}

• We use a separate, public "wrapper" method
to start the recursion:

public boolean findSolution() {
return this.findSolution(0);

}

• an example of overloading – two methods with
the same name, but different parameters

• this method takes no parameters

• it makes the initial call to the recursive method
and returns whatever that call returns

• it allows us to ensure that the correct initial value
is passed into the recursive method

Recursive Backtracking in General

• Useful for constraint satisfaction problems

• involve assigning values to variables according to
a set of constraints

• n-Queens: variables = Queen’s position in each row
constraints = no two queens in same row/col/diag

• many others: factory scheduling, room scheduling, etc.

• Backtracking greatly reduces the number of possible solutions
that we consider.

• ex:

• Recursion makes it easy to handle an arbitrary problem size.

• stores the state of each variable in a separate stack frame

Q

Q

• there are 16 possible solutions that
begin with queens in these two positions

• backtracking doesn't consider any of them!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 339

Template for Recursive Backtracking

// n is the number of the variable that the current
// call of the method is responsible for
boolean findSolution(int n, possibly other params) {

if (found a solution) {
this.displaySolution();
return true;

}

// loop over possible values for the nth variable
for (val = first to last) {

if (this.isValid(val, n)) {
this.applyValue(val, n);
if (this.findSolution(n + 1, other params)) {

return true;
}
this.removeValue(val, n);

}
}

return false; // backtrack!
}

Note: n++
will not work
here!

Template for Finding Multiple Solutions
(up to some target number of solutions)

boolean findSolutions(int n, possibly other params) {
if (found a solution) {

this.displaySolution();
this.solutionsFound++;
return (this.solutionsFound >= this.target);

}

// loop over possible values for the nth variable
for (val = first to last) {

if (isValid(val, n)) {
this.applyValue(val, n);
if (this.findSolutions(n + 1, other params)) {

return true;
}
this.removeValue(val, n);

}
}

return false;
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 340

Data Structures for n-Queens

• Three key operations:
• isSafe(row, col): check to see if a position is safe
• placeQueen(row, col)

• removeQueen(row, col)

• In theory, our 2-D array of booleans would be sufficient:

public class NQueens {
private boolean[][] board;

• It's easy to place or remove a queen:

private void placeQueen(int row, int col) {
this.board[row][col] = true;

}
private void removeQueen(int row, int col) {

this.board[row][col] = false;
}

…

• Problem: isSafe() takes a lot of steps. What matters more?

Additional Data Structures for n-Queens

• To facilitate isSafe(), add three arrays of booleans:
private boolean[] colEmpty;
private boolean[] upDiagEmpty;
private boolean[] downDiagEmpty;

• An entry in one of these arrays is:
– true if there are no queens in the column or diagonal
– false otherwise

• Numbering diagonals to get the indices into the arrays:

upDiag = row + col

3

2

1

0

3210

6543

5432

4321

3210

3

2

1

0

3210

3456

2345

1234

0123

downDiag =
(boardSize – 1) + row – col

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 341

Using the Additional Arrays

• Placing and removing a queen now involve updating four
arrays instead of just one. For example:

private void placeQueen(int row, int col) {
this.board[row][col] = true;
this.colEmpty[col] = false;
this.upDiagEmpty[row + col] = false;
this.downDiagEmpty[

(this.board.length - 1) + row - col] = false;
}

• However, checking if a square is safe is now more efficient:

private boolean isSafe(int row, int col) {
return (this.colEmpty[col]
&& this.upDiagEmpty[row + col]
&& this.downDiagEmpty[

(this.board.length - 1) + row - col]);
}

Recursive Backtracking II: Map Coloring

• We want to color a map using only four colors.

• Bordering states or countries cannot have the same color.

• example:

not allowed!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 342

Applying the Template to Map Coloring
boolean findSolution(n, perhaps other params) {

if (found a solution) {
this.displaySolution();
return true;

}
for (val = first to last) {

if (this.isValid(val, n)) {
this.applyValue(val, n);
if (this.findSolution(n + 1, other params)) {

return true;
}
this.removeValue(val, n);

}
}
return false;

}

template element

n

found a solution

val

isValid(val, n)

applyValue(val, n)

removeValue(val, n)

meaning in map coloring

consider the states in alphabetical order. colors = { red, yellow, green, blue }.

No color works for Wyoming,
so we backtrack…

Map Coloring Example

We color Colorado through
Utah without a problem.

Colorado:
Idaho:
Kansas:
Montana:
Nebraska:
North Dakota:
South Dakota:
Utah:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 343

Map Coloring Example (cont.)

Now we can complete
the coloring:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 344

A First Look at
Sorting and Algorithm Analysis

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 7, Part 1

Sorting an Array of Integers

• Ground rules:
• sort the values in increasing order
• sort “in place,” using only a small amount of additional storage

• Terminology:
• position: one of the memory locations in the array
• element: one of the data items stored in the array
• element i: the element at position i

• Goal: minimize the number of comparisons C and the number
of moves M needed to sort the array.

• move = copying an element from one position to another
example: arr[3] = arr[5];

15 7 36

0 1 2

arr 40 12

n-2 n-1
…

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 345

Defining a Class for our Sort Methods
public class Sort {

public static void bubbleSort(int[] arr) {
...

}
public static void insertionSort(int[] arr) {

...
}
...

}

• Our Sort class is simply a collection of methods like Java’s
built-in Math class.

• Because we never create Sort objects, all of the methods in
the class must be static.

• outside the class, we invoke them using the class name:
e.g., Sort.bubbleSort(arr)

Defining a Swap Method

• It would be helpful to have a method that swaps two elements
of the array.

• Why won’t the following work?

private static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 346

private static void swap(int a, int b) {
int temp = a;
a = b;
b = temp;

}

• Trace through the following lines to see the problem:

int[] arr = {15, 7, …};
swap(arr[0], arr[1]);

stack heap

...

arr

An Incorrect Swap Method

15 7

A Correct Swap Method

• This method works:
private static void swap(int[] arr, int a, int b) {

int temp = arr[a];
arr[a] = arr[b];
arr[b] = temp;

}

• Trace through the following with a memory diagram to convince
yourself that it works:

int[] arr = {15, 7, …};
swap(arr, 0, 1);

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 347

Selection Sort

• Basic idea:
• consider the positions in the array from left to right
• for each position, find the element that belongs there and put it

in place by swapping it with the element that’s currently there

• Example:

15 6 2 12 4

0 1 2 3 4

2

0

2 6 15 12 4

0 1 2 3 4

4

1

2 4 15 12 6

0 1 2 3 4

6

2

2 4 6 12 15

0 1 2 3 4

12

3

Why don’t we need to consider position 4?

Selecting an Element

• When we consider position i, the elements in positions
0 through i – 1 are already in their final positions.

example for i = 3:

• To select an element for position i:

• consider elements i, i+1,i+2,…,arr.length – 1, and
keep track of indexMin, the index of the smallest element
seen thus far

• when we finish this pass, indexMin is the index of the
element that belongs in position i.

• swap arr[i] and arr[indexMin]:

2 4 7 21 25 10 17

0 1 2 3 4 5 6

indexMin: 3 2 4 7 21 25 10 17

0 1 2 3 4 5 6

2 4 7 21 25 10 17

0 1 2 3 4 5 6

10 21

, 5 1010

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 348

Implementation of Selection Sort

• Use a helper method to find the index of the smallest element:
private static int indexSmallest(int[] arr, int start) {

int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
if (arr[i] < arr[indexMin]) {

indexMin = i;
}

}

return indexMin;
}

• The actual sort method is very simple:
public static void selectionSort(int[] arr) {

for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, i);
swap(arr, i, j);

}
}

Time Analysis

• Some algorithms are much more efficient than others.

• The time efficiency or time complexity of an algorithm is some
measure of the number of operations that it performs.

• for sorting, we’ll focus on comparisons and moves

• We want to characterize how the number of operations
depends on the size, n, of the input to the algorithm.

• for sorting, n is the length of the array

• how does the number of operations grow as n grows?

• We'll express the number of operations as functions of n

• C(n) = number of comparisons for an array of length n

• M(n) = number of moves for an array of length n

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 349

Counting Comparisons by Selection Sort
private static int indexSmallest(int[] arr, int start){

int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
if (arr[i] < arr[indexMin]) {

indexMin = i;
}

}

return indexMin;
}
public static void selectionSort(int[] arr) {

for (int i = 0; i < arr.length - 1; i++) {
int j = indexSmallest(arr, i);
swap(arr, i, j);

}
}

• To sort n elements, selection sort performs n - 1 passes:

on 1st pass, it performs ____ comparisons to find indexSmallest
on 2nd pass, it performs ____ comparisons

…
on the (n-1)st pass, it performs 1 comparison

• Adding them up: C(n) = 1 + 2 + … + (n - 2) + (n - 1)

Counting Comparisons by Selection Sort (cont.)

• The resulting formula for C(n) is the sum of an arithmetic
sequence:

C(n) = 1 + 2 + … + (n - 2) + (n - 1) =

• Formula for the sum of this type of arithmetic sequence:

• Thus, we can simplify our expression for C(n) as follows:

C(n) =

=

=




1 - n

1 i

i

2

1)m(m
 i

m

1 i









1 - n

1 i

i

2

1)1)-1)((n-(n



2

1)n-(n
 2n- 2n2C(n) =

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 350

Focusing on the Largest Term

• When n is large, mathematical expressions of n are dominated
by their “largest” term — i.e., the term that grows fastest as a
function of n.

• example: n n2/2 n/2 n2/2 – n/2
10 50 5 45
100 5000 50 4950
10000 50,000,000 5000 49,995,000

• In characterizing the time complexity of an algorithm,
we’ll focus on the largest term in its operation-count expression.

• for selection sort, C(n) = n2/2 - n/2  n2/2

• In addition, we’ll typically ignore the coefficient of the largest term
(e.g., n2/2  n2).

Big-O Notation

• We specify the largest term using big-O notation.

• e.g., we say that C(n) = n2/2 – n/2 is O(n2)

• Common classes of algorithms:

name example expressions big-O notation
constant time 1, 7, 10 O(1)

logarithmic time 3log10n, log2n + 5 O(log n)

linear time 5n, 10n – 2log2n O(n)

nlogn time 4nlog2n, nlog2n + n O(nlog n)

quadratic time 2n2 + 3n, n2 – 1 O(n2)

exponential time 2n, 5en + 2n2 O(cn)

• For large inputs, efficiency matters more than CPU speed.

• e.g., an O(log n) algorithm on a slow machine will
outperform an O(n) algorithm on a fast machine

sl
ow

er

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 351

Ordering of Functions

• We can see below that: n2 grows faster than nlog2n
nlog2n grows faster than n
n grows faster than log2n

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7 8 9 10 11 12

n^2

n log n

n

log n

n

Ordering of Functions (cont.)

• Zooming in, we see that: n2 >= n for all n >= 1
nlog2n >= n for all n >= 2
n > log2n for all n >= 1

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6

n^2

n log n

n

log n

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 352

Big-O Time Analysis of Selection Sort

• Comparisons: we showed that C(n) = n2/2 – n/2

• selection sort performs O(n2) comparisons

• Moves: after each of the n-1 passes, the algorithm does one swap.

• n-1 swaps, 3 moves per swap

• M(n) = 3(n-1) = 3n-3

• selection sort performs O(n) moves.

• Running time (i.e., total operations): ?

Mathematical Definition of Big-O Notation

• f(n) = O(g(n)) if there exist positive constants c and n0

such that f(n) <= cg(n) for all n >= n0

• Example: f(n) = n2/2 – n/2 is O(n2), because
n2/2 – n/2 <= n2 for all n >= 0.

• Big-O notation specifies an upper bound on a function f(n)
as n grows large.

n

f(n) = n2/2 – n/2

g(n) = n2

n0 = 0c = 1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 353

Big-O Notation and Tight Bounds

• Strictly speaking, big-O notation provides an upper bound,
not a tight bound (upper and lower).

• Example:

• 3n – 3 is O(n2) because 3n – 3 <= n2 for all n >= 1

• 3n – 3 is also O(2n) because 3n – 3 <= 2n for all n >= 1

• However, it is common to use big-O notation to characterize
a function as closely as possible – as if it specified a tight bound.

• for our example, we would say that 3n – 3 is O(n)

• this is how you should use big-O in this class!

Insertion Sort

• Basic idea:

• going from left to right, “insert” each element into its proper
place with respect to the elements to its left

• “slide over” other elements to make room

• Example:

15 4 2 12 6

0 1 2 3 4

4 15 2 12 6

2 4 15 12 6

2 4 12 15 6

2 4 6 12 15

4

2

12

6

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 354

Comparing Selection and Insertion Strategies

• In selection sort, we start with the positions in the array and
select the correct elements to fill them.

• In insertion sort, we start with the elements and determine
where to insert them in the array.

• Here’s an example that illustrates the difference:

• Sorting by selection:
• consider position 0: find the element (2) that belongs there
• consider position 1: find the element (9) that belongs there
• …

• Sorting by insertion:
• consider the 12: determine where to insert it
• consider the 15; determine where to insert it
• …

18 12 15 9 25 2 17

0 1 2 3 4 5 6

Inserting an Element
• When we consider element i, elements 0 through i – 1

are already sorted with respect to each other.

example for i = 3:

• To insert element i:
• make a copy of element i, storing it in the variable toInsert:

• consider elements i-1, i-2, …
• if an element > toInsert, slide it over to the right
• stop at the first element <= toInsert

• copy toInsert into the resulting “hole”:

6 14 19 9 …

0 1 2 3 4

6 14 19 9

0 1 2 3

6 9 14 19

0 1 2 3

9toInsert

6 14 19 9

0 1 2 3

9toInsert 1914

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 355

Insertion Sort Example (done together)
description of steps 12 5 2 13 18 4

Implementation of Insertion Sort
public class Sort {

...
public static void insertionSort(int[] arr) {

for (int i = 1; i < arr.length; i++) {
if (arr[i] < arr[i-1]) {

int toInsert = arr[i];

int j = i;
do {

arr[j] = arr[j-1];
j = j - 1;

} while (j > 0 && toInsert < arr[j-1]);

arr[j] = toInsert;
}

}
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 356

Time Analysis of Insertion Sort

• The number of operations depends on the contents of the array.

• best case: array is sorted
• each element is only compared to the element to its left
• we never execute the do-while loop!
• C(n) =_______, M(n) = _______, running time = ______

• worst case: array is in reverse order
• each element is compared to all of the elements to its left:

arr[1] is compared to 1 element (arr[0])
arr[2] is compared to 2 elements (arr[0] and arr[1])
…
arr[n-1] is compared to n-1 elements

• C(n) = 1 + 2 + … + (n - 1) = _______

• similarly, M(n) = ______, running time = _______

• average case: elements are randomly arranged
• on average, each element is compared to half

of the elements to its left
• still get C(n) = M(n) = _______, running time = _______

also true if array
is almost sorted

Shell Sort

• Developed by Donald Shell

• Improves on insertion sort

• takes advantage of the fact that it's fast for almost-sorted arrays

• eliminates a key disadvantage: an element may need
to move many times to get to where it belongs.

• Example: if the largest element starts out at the beginning of the
array, it moves one place to the right on every insertion!

• Shell sort uses larger moves that allow elements to quickly get
close to where they belong in the sorted array.

999 42 56 30 18 23 … 11

0 1 2 3 4 5 … 1000

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 357

3) elements 2 and 5

Sorting Subarrays

• Basic idea:

• use insertion sort on subarrays that contain elements
separated by some increment incr
• increments allow the data items to make larger “jumps”

• repeat using a decreasing sequence of increments

• Example for an initial increment of 3:

• three subarrays:

• Sort the subarrays using insertion sort to get the following:

• Next, we complete the process using an increment of 1.

36 18 10 27 3 20 9 8

0 1 2 3 4 5 6 7

6 23 14 27 18 20 9 3

0 1 2 3 4 5 6 7

9 3 10 27 8 20 36 18

36 18 27 3 9 8

1) elements 0, 3, 6 2) elements 1, 4, 7

10 20

Shell Sort: A Single Pass

• We don’t actually consider the subarrays one at a time.

• For each element from position incr to the end of the array,
we insert the element into its proper place with respect to
the elements from its subarray that come before it.

• The same
example
(incr = 3):

36 18 10 27 3 20 9 8

0 1 2 3 4 5 6 7

27 18 10 36 3 20 9 8

27 3 10 36 18 20 9 8

27 3 10 36 18 20 9 8

9 3 10 27 18 20 36 8

20

9

8

9 3 10 27 8 20 36 18

36

18

10

27 36

3 18

27

3

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 358

• When we consider element i, the other elements in its subarray
are already sorted with respect to each other.

example for i = 6:
(incr = 3)

the other element’s in 9’s subarray (the 27 and 36)
are already sorted with respect to each other

• To insert element i:
• make a copy of element i, storing it in the variable toInsert:

• consider elements i-incr, i-(2*incr), i-(3*incr),…
• if an element > toInsert, slide it right within the subarray
• stop at the first element <= toInsert

• copy toInsert into the “hole”:

27 3 10 36 18 20 9 8

0 1 2 3 4 5 6 7

9 3 10 27 18 …

0 1 2 3 4

9toInsert

27 3 10 36 18 20 9 8

0 1 2 3 4 5 6 7

9toInsert 36

Inserting an Element in a Subarray

27 3 10 36 18 20 9 8

0 1 2 3 4 5 6 7

27

The Sequence of Increments

• Different sequences of decreasing increments can be used.

• Our version uses values that are one less than a power of two.

• 2k – 1 for some k

• … 63, 31, 15, 7, 3, 1

• can get to the next lower increment using integer division:

incr = incr/2;

• Should avoid numbers that are multiples of each other.

• otherwise, elements that are sorted with respect to each other
in one pass are grouped together again in subsequent passes

• repeat comparisons unnecessarily

• get fewer of the large jumps that speed up later passes

• example of a bad sequence: 64, 32, 16, 8, 4, 2, 1

• what happens if the largest values are all in odd positions?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 359

Implementation of Shell Sort
public static void shellSort(int[] arr) {

int incr = 1;
while (2 * incr <= arr.length) {

incr = 2 * incr;
}
incr = incr - 1;

while (incr >= 1) {
for (int i = incr; i < arr.length; i++) {

if (arr[i] < arr[i-incr]) {
int toInsert = arr[i];

int j = i;
do {

arr[j] = arr[j-incr];
j = j - incr;

} while (j > incr-1 &&
toInsert < arr[j-incr]);

arr[j] = toInsert;
}

}
incr = incr/2;

}
}

(If you replace incr with 1
in the for-loop, you get the
code for insertion sort.)

Time Analysis of Shell Sort

• Difficult to analyze precisely

• typically use experiments to measure its efficiency

• With a bad interval sequence, it’s O(n2) in the worst case.

• With a good interval sequence, it’s better than O(n2).

• at least O(n1.5) in the average and worst case

• some experiments have shown average-case running times
of O(n1.25) or even O(n7/6)

• Significantly better than insertion or selection for large n:
n n2 n1.5 n1.25

10 100 31.6 17.8
100 10,000 1000 316
10,000 100,000,000 1,000,000 100,000
106 1012 109 3.16 x 107

• We’ve wrapped insertion sort in another loop and increased its
efficiency! The key is in the larger jumps that Shell sort allows.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 360

Practicing Time Analysis

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < n; i++) {

x += i; // statement 1
for (int j = 0; j < i; j++) {

x += j;
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?

What about now?

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < 3*n + 4; i++) {

x += i; // statement 1
for (int j = 0; j < i; j++) {

x += j;
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 1 is executed as a function of the input n?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 361

Practicing Time Analysis

• Consider the following static method:
public static int mystery(int n) {

int x = 0;
for (int i = 0; i < n; i++) {

x += i; // statement 1
for (int j = 0; j < i; j++) {

x += j; // statement 2
}

}
return x;

}

• What is the big-O expression for the number of times that
statement 2 is executed as a function of the input n?

value of i number of times statement 2 is executed

0 1 2 3 4

Bubble Sort

• Perform a sequence of passes from left to right

• each pass swaps adjacent elements if they are out of order

• larger elements “bubble up” to the end of the array

• At the end of the kth pass:

• the k rightmost elements are in their final positions

• we don’t need to consider them in subsequent passes.

• Example:

after the first pass:

after the second:

after the third:

after the fourth:

28 24 37 15 5

24 28 15 5 37

24 15 5 28 37

15 5 24 28 37

5 15 24 28 37

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 362

Implementation of Bubble Sort
public class Sort {

...
public static void bubbleSort(int[] arr) {

for (int i = arr.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {

if (arr[j] > arr[j+1]) {
swap(arr, j, j+1);

}
}

}
}

}

• Nested loops:

• the inner loop performs a single pass

• the outer loop governs:

• the number of passes (arr.length - 1)

• the ending point of each pass (the current value of i)

Time Analysis of Bubble Sort

• Comparisons (n = length of array):

• they are performed in the inner loop

• how many repetitions does each execution
of the inner loop perform?

value of i number of comparisons
n – 1 n – 1
n – 2 n – 2

… …
2 2
1 1

1 + 2 + … + n – 1 =

public static void bubbleSort(int[] arr) {
for (int i = arr.length - 1; i > 0; i--) {

for (int j = 0; j < i; j++) {
if (arr[j] > arr[j+1]) {

swap(arr, j, j+1);
}

}
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 363

Time Analysis of Bubble Sort

• Comparisons: the kth pass performs n - k comparisons,

so we get C(n) = = n2/2 – n/2 = O(n2)

• Moves: depends on the contents of the array

• in the worst case:

• M(n) =

• in the best case:

• Running time:

• C(n) is always O(n2), M(n) is never worse than O(n2)

• therefore, the largest term of C(n) + M(n) is O(n2)

• Bubble sort is a quadratic-time or O(n2) algorithm.

• can’t do much worse than bubble!




1 - n

1 i

i

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 364

Sorting II:
Divide-and-Conquer Algorithms,

Distributive Sorting

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 7, Part 2

Quicksort

• Like bubble sort, quicksort uses an approach based on swapping
out-of-order elements, but it’s more efficient.

• A recursive, divide-and-conquer algorithm:

• divide: rearrange the elements so that we end up with
two subarrays that meet the following criterion:

each element in left array <= each element in right array

example:

• conquer: apply quicksort recursively to the subarrays,
stopping when a subarray has a single element

• combine: nothing needs to be done, because of the way
we formed the subarrays

136414812 131214486

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 365

Partitioning an Array Using a Pivot

• The process that quicksort uses to rearrange the elements
is known as partitioning the array.

• It uses one of the values in the array as a pivot,
rearranging the elements to produce two subarrays:
• left subarray: all values <= pivot
• right subarray: all values >= pivot

• The subarrays will not always have the same length.

• This approach to partitioning is one of several variants.

12918694157

12151896497

all values <= 9 all values >= 9

partition using a pivot of 9

equivalent to the criterion
on the previous page.

Possible Pivot Values

• First element or last element

• risky, can lead to terrible worst-case behavior

• especially poor if the array is almost sorted

• Middle element (what we will use)

• Randomly chosen element

• Median of three elements

• left, center, and right elements

• three randomly selected elements

• taking the median of three decreases the probability of
getting a poor pivot

186121484 186121484

pivot = 18

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 366

Partitioning an Array: An Example

• Maintain indices i and j, starting them “outside” the array:

• Find “out of place” elements:
• increment i until arr[i] >= pivot

• decrement j until arr[j] <= pivot

• Swap arr[i] and arr[j]:

12918694157

12918694157

12151869497

i j

i j

i j

i = first – 1

j = last + 1

12918694157arr

pivot = 9

first last

Partitioning Example (cont.)

from prev. page:

• Find:

• Swap:

• Find:

and now the indices have crossed, so we return j.

• Subarrays: left = from first to j, right = from j+1 to last

12151869497

12151869497

12151896497

i j

i j

12151896497

i j

12151896497

j i

j ifirst last

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 367

Partitioning Example 2

• Start
(pivot = 13):

• Find:

• Swap:

• Find:

and now the indices are equal, so we return j.

• Subarrays:

1920418132524

1920418132524

1920241813254

i j

i j

1920241813254

i j

1920241813254

i j

i j

24 4

13

Partitioning Example 3 (done together)

• Start
(pivot = 5):

• Find:

62619257144

62619257144

i j

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 368

Partitioning Example 4

• Start
(pivot = 15):

• Find:

186920157108

186920157108

i j

partition() Helper Method
private static int partition(int[] arr, int first, int last)
{

int pivot = arr[(first + last)/2];
int i = first - 1; // index going left to right
int j = last + 1; // index going right to left
while (true) {

do {
i++;

} while (arr[i] < pivot);
do {

j--;
} while (arr[j] > pivot);
if (i < j) {

swap(arr, i, j);
} else {

return j; // arr[j] = end of left array
}

}
}

…12918694157…

first last

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 369

Implementation of Quicksort
public static void quickSort(int[] arr) { // "wrapper" method

if (arr.length <= 1) {
return;

}
qSort(arr, 0, arr.length - 1);

}

private static void qSort(int[] arr, int first, int last) {
int split = partition(arr, first, last);

if (first < split) { // if left subarray has 2+ values
qSort(arr, first, split); // sort it recursively!

}
if (last > split + 1) { // if right has 2+ values

qSort(arr, split + 1, last); // sort it!
}

} // note: base case is when neither call is made!

…12151896497…

first last
split
(j)

A Quick Review of Logarithms

• logbn = the exponent to which b must be raised to get n

• logbn = p if bp = n

• examples: log28 = 3 because 23 = 8

log1010000 = 4 because 104 = 10000

• Another way of looking at log2n:

• let's say that you repeatedly divide n by 2 (using integer division)

• log2n is an upper bound on the number of divisions
needed to reach 1

• example: log218 is approx. 4.17

18/2 = 9 9/2 = 4 4/2 = 2 2/2 = 1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 370

A Quick Review of Logs (cont.)

• O(log n) algorithm – one in which the number of operations
is proportional to logbn for any base b

• logbn grows much more slowly than n

• Thus, for large values of n:

• a O(log n) algorithm is much faster than a O(n) algorithm
• logn << n

• a O(nlog n) algorithm is much faster than a O(n2) algorithm
• n * logn << n * n
nlog n << n2

log2nn

12

101024 (1K)

201024*1024 (1M)

301024*1024*1024 (1G)

it's also faster than a O(n1.5)
algorithm like Shell sort

Time Analysis of Quicksort

• Partitioning an array of length n requires approx. n comparisons.
• most elements are compared with the pivot once; a few twice

• best case: partitioning always divides the array in half
• repeated recursive calls give:

n

2*(n/2) = n

4*(n/4) = n

...

0

• at each "row" except the bottom, we perform n comparisons
• there are _______ rows that include comparisons
• C(n) = ?

• Similarly, M(n) and running time are both __________

n/2n/2

n/4n/4n/4n/4

1111 1 1 1 1 1

comparisons

...

n

…1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 371

Time Analysis of Quicksort (cont.)

• worst case: pivot is always the smallest or largest element
• one subarray has 1 element, the other has n - 1

• repeated recursive calls give:

n

n-1

n-2

n-3
.......

2

• C(n) = = O(n2).

• average case is harder to analyze
• C(n) > nlog2n, but it’s still O(nlog n)

n-1

n

1

n-21

n-31

1

1 1

...

comparisons




n

2 i

i M(n) and run time are also O(n2).

2

Mergesort

• The algorithms we've seen so far have sorted the array in place.

• use only a small amount of additional memory

• Mergesort requires an additional temporary array
of the same size as the original one.

• it needs O(n) additional space, where n is the array size

• It is based on the process of merging two sorted arrays.

• example:

11975

241482

24141198752

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 372

Merging Sorted Arrays

• To merge sorted arrays A and B into an array C, we maintain
three indices, which start out on the first elements of the arrays:

• We repeatedly do the following:
• compare A[i] and B[j]
• copy the smaller of the two to C[k]
• increment the index of the array whose element was copied
• increment k

241482

11975

i

j

A

B

C

k

2

241482

11975

i

j

A

B

C

k

Merging Sorted Arrays (cont.)

• Starting point:

• After the first copy:

• After the second copy:

241482

11975

i

j

A

B

C

k

2

241482

11975

i

j

A

B

C

k

52

241482

11975

i

j

A

B

C

k

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 373

Merging Sorted Arrays (cont.)

• After the third copy:

• After the fourth copy:

• After the fifth copy:

752

241482

11975

i

j

A

B

C

k

8752

241482

11975

i

j

A

B

C

k

98752

241482

11975

i

j

A

B

C

k

Merging Sorted Arrays (cont.)

• After the sixth copy:

• There's nothing left in B, so we simply copy the remaining
elements from A:

1198752

241482

11975

i

j

A

B

C

k

24141198752

241482

11975

i

j

A

B

C

k

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 374

Divide and Conquer

• Like quicksort, mergesort is a divide-and-conquer algorithm.

• divide: split the array in half, forming two subarrays

• conquer: apply mergesort recursively to the subarrays,
stopping when a subarray has a single element

• combine: merge the sorted subarrays

272336 4148 12

4148 12 27233 6

8 12 4 14 33 6 27 2

12 8 14 4 6 33 2 27

12 8 14 4 33 6 27 2

14128 4 33276 2

33271412 864 2

split

split

split

merge

merge

merge

Tracing the Calls to Mergesort

272336 4148 12

272336 4148 12

4148 12

8 12

272336 4148 12

4148 12

split into two 4-element subarrays, and make a recursive call to sort the left subarray:

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

the initial call is made to sort the entire array:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 375

Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

12

8 12

272336 4148 12

4148 12

base case, so return to the call for the subarray {12, 8}:

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

8 12

272336 4148 12

4148 12

base case, so return to the call for the subarray {12, 8}:

make a recursive call to sort its right subarray:

8

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 376

Tracing the Calls to Mergesort

8 12

272336 4148 12

4148 12

end of the method, so return to the call for the 4-element subarray, which now has
a sorted left subarray:

merge the sorted halves of {12, 8}:

12 8

272336 4148 12

41412 8

Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

make a recursive call to sort the right subarray of the 4-element subarray

272336 4148 12

41412 8

4 14

14 base case…

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 377

Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

make a recursive call to sort its right subarray:

return to the call for the subarray {14, 4}:

272336 4148 12

41412 8

4 14

4 base case…

Tracing the Calls to Mergesort

4 14

272336 4148 12

41412 8

merge the sorted halves of {14, 4}:

return to the call for the subarray {14, 4}:

272336 4148 12

41412 8

4 14 14 4

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 378

Tracing the Calls to Mergesort

272336 4148 12

14412 8

merge the 2-element subarrays:

end of the method, so return to the call for the 4-element subarray, which now has
two sorted 2-element subarrays:

272336 4148 12

14412 8 14128 4

Tracing the Calls to Mergesort

272336 14128 4

perform a similar set of recursive calls to sort the right subarray. here's the result:

end of the method, so return to the call for the original array, which now has a
sorted left subarray:

332762 14128 4

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

332762 14128 4

33271412 864 2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 379

Implementing Mergesort

• In theory, we could create new arrays for each new pair of
subarrays, and merge them back into the array that was split.

• Instead, we'll create a temp. array of the same size as the original.

• pass it to each call of the recursive mergesort method

• use it when merging subarrays of the original array:

• after each merge, copy the result back into the original array:

272336 14412 8arr

14128 4temp

272336 14128 4arr

14128 4temp

A Method for Merging Subarrays
private static void merge(int[] arr, int[] temp,
int leftStart, int leftEnd, int rightStart, int rightEnd) {

int i = leftStart; // index into left subarray
int j = rightStart; // index into right subarray
int k = leftStart; // index into temp

while (i <= leftEnd && j <= rightEnd) {
if (arr[i] < arr[j]) {

temp[k] = arr[i];
i++; k++;

} else {
temp[k] = arr[j];
j++; k++;

}
}

while (i <= leftEnd) {
temp[k] = arr[i];
i++; k++;

}
while (j <= rightEnd) {

temp[k] = arr[j];
j++; k++;

}

for (i = leftStart; i <= rightEnd; i++) {
arr[i] = temp[i];

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 380

A Method for Merging Subarrays
private static void merge(int[] arr, int[] temp,
int leftStart, int leftEnd, int rightStart, int rightEnd) {

int i = leftStart; // index into left subarray
int j = rightStart; // index into right subarray
int k = leftStart; // index into temp

while (i <= leftEnd && j <= rightEnd) { // both subarrays still have values
if (arr[i] < arr[j]) {

temp[k] = arr[i];
i++; k++;

} else {
temp[k] = arr[j];
j++; k++;

}
}

...
}

…332762 14128 4…

leftStart

arr:

……temp:

leftEnd rightStart rightEnd

Methods for Mergesort

• Here's the key recursive method:
private static void mSort(int[] arr, int[] temp, int start, int end){

if (start >= end) { // base case: subarray of length 0 or 1
return;

} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);
}

}

…272336 4148 12…

start

arr:

end

……temp:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 381

Methods for Mergesort

• Here's the key recursive method:
private static void mSort(int[] arr, int[] temp, int start, int end){

if (start >= end) { // base case: subarray of length 0 or 1
return;

} else {
int middle = (start + end)/2;

mSort(arr, temp, start, middle);
mSort(arr, temp, middle + 1, end);

merge(arr, temp, start, middle, middle + 1, end);
}

}

• We use a "wrapper" method to create the temp array,
and to make the initial call to the recursive method:

public static void mergeSort(int[] arr) {
int[] temp = new int[arr.length];
mSort(arr, temp, 0, arr.length - 1);

}

Time Analysis of Mergesort

• Merging two halves of an array of size n requires 2n moves.
Why?

• Mergesort repeatedly divides the array in half, so we have the
following call tree (showing the sizes of the arrays):

2n

2*2*(n/2) = 2n

4*2*(n/4) = 2n

...

• at all but the last level of the call tree, there are 2n moves

• how many levels are there?
• M(n) = ?

• C(n) = ?

n/2n/2

n/4n/4n/4n/4

11111 1 1 1 1 1

moves

...

n

…

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 382

Summary: Sorting Algorithms

• Insertion sort is best for nearly sorted arrays.

• Mergesort has the best worst-case complexity, but requires
O(n) extra memory – and moves to and from the temp. array.

• Quicksort is comparable to mergesort in the best/average case.

• efficiency is also O(n log n), but less memory and fewer moves

• its extra memory is from…

• with a reasonable pivot choice, its worst case is seldom seen

extra memoryworst caseavg casebest casealgorithm

O(1)O(n2)O(n2)O(n2)selection sort

O(1)O(n2)O(n2)O(n)insertion sort

O(1)O(n1.5)O(n1.5)O(n log n)Shell sort

O(1)O(n2)O(n2)O(n2)bubble sort

best/avg: O(log n)

worst: O(n)

O(n2)O(n log n)O(n log n)quicksort

O(n)O(nlog n)O(n log n)O(n log n)mergesort

Comparison-Based vs. Distributive Sorting

• All of the sorting algorithms we've considered have been
comparison-based:

• treat the values being sorted as wholes (comparing them)

• don’t “take them apart” in any way

• all that matters is the relative order of the values

• No comparison-based sorting algorithm can do better than
O(nlog2n) on an array of length n.

• O(nlog2n) is a lower bound for such algorithms

• Distributive sorting algorithms do more than compare values;
they perform calculations on the values being sorted.

• Moving beyond comparisons allows us to overcome
the lower bound.

• tradeoff: use more memory.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 383

Distributive Sorting Example: Radix Sort

• Breaks each value into a sequence of m components,
each of which has k possible values.

• Examples: m k
• integer in range 0 ... 999 3 10
• string of 15 upper-case letters 15 26
• 32-bit integer 32 2 (in binary)

4 256 (as bytes)

• Strategy: Distribute the values into "bins" according to their
last component, then concatenate the results:

33 41 12 24 31 14 13 42 34

get: 41 31 | 12 42 | 33 13 | 24 14 34

• Repeat, moving back one component each time:

get: 12 13 14 | 24 | 31 33 34 | 41 42

Analysis of Radix Sort

• m = number of components
k = number of possible values for each component
n = length of the array

• Time efficiency: O(m*n)

• perform m distributions, each of which processes all n values

• O(m*n) < O(nlog n) when m < log n

so we want m to be small

• However, there is a tradeoff:

• as m decreases, k increases
• fewer components  more possible values per component

• as k increases, so does memory usage
• need more bins for the results of each distribution

• increased speed requires increased memory usage

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 384

Big-O Notation Revisited

• We've seen that we can group functions into classes by
focusing on the fastest-growing term in the expression for the
number of operations that they perform.

• e.g., an algorithm that performs n2/2 – n/2 operations is a
O(n2)-time or quadratic-time algorithm

• Common classes of algorithms:

name example expressions big-O notation
constant time 1, 7, 10 O(1)

logarithmic time 3log10n, log2n + 5 O(log n)

linear time 5n, 10n – 2log2n O(n)

nlogn time 4nlog2n, nlog2n + n O(nlog n)

quadratic time 2n2 + 3n, n2 – 1 O(n2)

cubic time n2 + 3n3, 5n3 – 5 O(n3)

exponential time 2n, 5en + 2n2 O(cn)

factorial time 3n!, 5n + n! O(n!)

sl
ow

er

How Does the Number of Operations Scale?

• Let's say that we have a problem size of 1000, and we measure
the number of operations performed by a given algorithm.

• If we double the problem size to 2000, how would the number
of operations performed by an algorithm increase if it is:

• O(n)-time

• O(n2)-time

• O(n3)-time

• O(log2n)-time

• O(2n)-time

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 385

How Does the Actual Running Time Scale?

• How much time is required to solve a problem of size n?

• assume that each operation requires 1 sec (1 x 10-6 sec)

• sample computations:

• when n = 10, an n2 algorithm performs 102 operations.
102 * (1 x 10-6 sec) = .0001 sec

• when n = 30, a 2n algorithm performs 230 operations.
230 * (1 x 10-6 sec) = 1073 sec = 17.9 min

problem size (n)time
function 605040302010

.00006 s.00005 s.00004 s.00003 s.00002 s.00001 sn
.0036 s.0025 s.0016 s.0009 s.0004 s.0001 sn2

13.0 min5.2 min1.7 min24.3 s3.2 s.1 sn5

36,600 yrs35.7 yrs12.7 days17.9 min1.0 s.001 s2n

What's the Largest Problem That Can Be Solved?

• What's the largest problem size n that can be solved in
a given time T? (again assume 1 sec per operation)

• sample computations:
• 1 hour = 3600 sec

that's enough time for 3600/(1 x 10-6) = 3.6 x 109 operations
• n2 algorithm:

n2 = 3.6 x 109  n = (3.6 x 109)1/2 = 60,000
• 2n algorithm:

2n = 3.6 x 109  n = log2(3.6 x 109) ~= 31

time available (T)time
function 1 year1 week1 hour1 min

3.1 x 10136.0 x 10113.6 x 10960,000,000n
5,615,692777,68860,0007745n2

5002278135n5

443931252n

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 386

Linked Lists

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 8, Part 1

...725231 ...725231item

Representing a Sequence of Data

• Sequence – an ordered collection of items (position matters)

• we will look at several types: lists, stacks, and queues

• Most common representation = an array

• Advantages of using an array:

• easy and efficient access to any item in the sequence
• items[i] gives you the item at position i in O(1) time
• known as random access

• very compact (but can waste space if positions are empty)

• Disadvantages of using an array:

• have to specify an initial array size and resize it as needed

• inserting/deleting items can require shifting other items
• ex: insert 63 between 52 and 72

items

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 387

Alternative Representation: A Linked List

• A linked list stores a sequence of items in separate nodes.

• Each node is an object that contains:
• a single item
• a "link" (i.e., a reference) to

the node containing the next item

• The last node in the linked list has a link value of null.

• The linked list as a whole is represented by a variable that
holds a reference to the first node.

• e.g., items in the example above

31 52 72

null

items

31

Arrays vs. Linked Lists in Memory

• In an array, the elements occupy consecutive memory locations:

• In a linked list, the nodes are distinct objects.

• do not have to be next to each other in memory

• that's why we need the links to get from one node to the next!

31

...725231items

...7252310x100items

0x100 0x104 0x108

52 72

null
items

31

0x812

52

0x208

72

null
0x520items

0x520 0x812 0x208

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 388

Linked Lists in Memory

• Here's how the above linked list might actually look in memory:

31 52 72

null
items

0x5200x200

0x204

720x208

null0x212

0x216

……

310x520

0x8120x524

0x528

……

520x812

0x2080x816

0x520 0x812 0x208
0x200

the variable items

the last node

the first node

the second node

Features of Linked Lists

• They can grow without limit (provided there is enough memory).

• Easy to insert/delete an item – no need to "shift over" other items.

• for example, to insert 63 between 52 and 72:

• Disadvantages:
• they don't provide random access

• need to "walk down" the list to access an item
• the links take up additional memory

31 52 72

null

31 52 72

null

63

items

items

before:

after:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 389

A String as a Linked List of Characters

• Each node represents one character.

• Java class for this type of node:
public class StringNode {

private char ch;
private StringNode next;

public StringNode(char c, StringNode n) {
this.ch = c;
this.next = n;

}
...

}

• The string as a whole is represented by a variable that holds
a reference to the node for the first character (e.g., str1 above).

'c' 'a' 't'

null
str1

'c'

same type as the node itself!

ch

next

A String as a Linked List (cont.)

• An empty string will be represented by a null value.
example:

StringNode str2 = null;

• We will use static methods that take the string as a parameter.

• e.g., we'll write length(str1) instead of str1.length()

• outside the class, call the methods using the class name:

StringNode.length(str1)

• This approach allows the methods to handle empty strings.

• if str1 == null:

• length(str1) will work

• str1.length() will throw a NullPointerException

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 390

Building a Linked List of Characters I

• We can use the StringNode constructor to build the linked list
from the previous slide.

• One way is to start with the last node and work towards the front:

StringNode str1 = new StringNode('t', null);

't'

null
str1

public StringNode(char c,
StringNode n) {

this.ch = c;
this.next = n;

}

Building a Linked List of Characters II

• We can use the StringNode constructor to build the linked list
from the previous slide.

• One way is to start with the last node and work towards the front:

StringNode str1 = new StringNode('t', null);
str1 = new StringNode('a', str1);

't'

null
str1

public StringNode(char c,
StringNode n) {

this.ch = c;
this.next = n;

}

'a'

'a'

this

c

n

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 391

Building a Linked List of Characters III

• We can use the StringNode constructor to build the linked list
from the previous slide.

• One way is to start with the last node and work towards the front:

StringNode str1 = new StringNode('t', null);
str1 = new StringNode('a', str1);

'a' 't'

null
str1

public StringNode(char c,
StringNode n) {

this.ch = c;
this.next = n;

}

Building a Linked List of Characters IV

• We can use the StringNode constructor to build the linked list
from the previous slide.

• One way is to start with the last node and work towards the front:

StringNode str1 = new StringNode('t', null);
str1 = new StringNode('a', str1);
str1 = new StringNode('c', str1);

• Later, we'll see methods that can be used to build a linked list
and add nodes to it.

public StringNode(char c,
StringNode n) {

this.ch = c;
this.next = n;

}

'c' 'a' 't'

null
str1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 392

Review of Variables

• A variable or variable expression represents both:
• a "box" or location in memory (the address of the variable)
• the contents of that "box" (the value of the variable)

• Practice:

StringNode str; // points to the first node
StringNode temp; // points to the second node

'd' 'o' 'g'

null

str
0x520 0x812 0x2080x200

temp

0x204
ch

next

valueaddressexpression

0x520 (ref to the 'd' node)0x200str

str.ch

str.next

Assumptions:
• ch field has the same

memory address as
the node itself.

• next field comes
2 bytes after the start
of the node.

More Complicated Expressions

• Example: temp.next.ch

• Start with the beginning of the expression: temp.next
It represents the next field of the node to which temp refers.

• address =
• value =

• Next, consider temp.next.ch
It represents the ch field of the node to which temp.next refers.

• address =
• value =

‘d’‘d’ ‘o’‘o’

null

‘g’

null

‘g’str
0x520 0x812 0x2080x200

temp

0x204

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 393

What are the address and value of str.next.next?

• str.next is…

• thus, str.next.next is…

‘d’‘d’ ‘o’‘o’

null

‘g’

null

‘g’str
0x520 0x812 0x2080x200

temp

0x204

What expression using t would give us 'e'?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 394

What expression using t would give us 'e'?

Working backwards…

• I know that I need the ch field in the 'e' node

• Where do I have a reference to the 'e' node?

• What expression can I use for the box containing that reference?

Review of Assignment Statements

• An assignment of the form

var1 = var2;

• takes the value inside var2

• copies it into var1

• Example involving integers:

int x = 5;

int y = x;
5

• Example involving references:

int[] a1 = {3, 4, 5};

int[] a2 = a1;
0x320

5x

0x400

5y

0x804

543a1

0x600

a2

0x256

0x320

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 395

1) str.next = temp.next;

2) temp.next = temp.next.next;

What About These Assignments?
• Identify the two boxes.
• Determine the value in the box

specified by the right-hand side.
• Copy that value into the box

specified by the left-hand side.

'd'

Writing an Appropriate Assignment

• If temp didn't already refer to the 'o' node, what assignment
would be needed to make it refer to that node?

• start by asking: where do I currently have a reference
to the 'o' node?

• then ask: what expression can I use for that box?

• then write the assignment:

'o' 'g'

null

str
0x520 0x812 0x2080x200

temp

0x204

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 396

A Linked List Is a Recursive Data Structure!

• Recursive definition: a linked list is either
a) empty or
b) a single node, followed by a linked list

• Viewing linked lists in this way allows us to write recursive
methods that operate on linked lists.

Recursively Finding the Length of a String
• For a Java String object:

public static int length(String str) {
if (str.equals("")) {

return 0;
} else {

int lenRest = length(str.substring(1));
return 1 + lenRest;

}
}

• For a linked-list string:

public static int length(StringNode str) {
if (str == null) {

return 0;
} else {

int lenRest = length(str.next);
return 1 + lenRest;

}
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 397

An Alternative Version of the Method

• Original version:
public static int length(StringNode str) {

if (str == null) {
return 0;

} else {
int lenRest = length(str.next);
return 1 + lenRest;

}
}

• Version without a variable for the result of the recursive call:
public static int length(StringNode str) {

if (str == null) {
return 0;

} else {
return 1 + length(str.next);

}
}

Tracing length()
public static int length(StringNode str) {

if (str == null) {
return 0;

} else {
return 1 + length(str.next);

}
}

• Example: StringNode.length(str1)

str:null

str:0x404
"t"

str:0x720
"at"

str:0x128
"cat"

str:0x404
"t"

str:0x720
"at"

str:0x128
"cat"

str:0x720
"at"

str:0x128
"cat"

str:0x128
"cat"

str:0x404

str:0x720
"at"

str:0x128
"cat"

str:0x720

str:0x128
"cat"

str:0x128

return 0;

return 1+0

return 1+1

return 1+2
time

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 398

Using Iteration to Traverse a Linked List

• Many tasks require us to traverse or "walk down" a linked list.

• We just saw a method that used recursion to do this.

• It can also be done using iteration (for loops, while loops, etc.).

• We make use of a variable (call it trav) that keeps track of
where we are in the linked list.

• Template for traversing an entire linked list:
StringNode trav = str; // start with first node
while (trav != null) {

// process the current node here
trav = trav.next; // move trav to next node

}

‘w’‘w’ ‘a’‘a’ ‘l’‘l’
str

trav

null

‘k’

null

‘k’

Example of Iterative Traversal

• toUpperCase(str): converting str to all upper-case letters

• Similar to the built-in method for Java String objects.

• This method processes linked-list strings:

• uses a loop to process one StringNode at a time

• modifies the internals of the string (unlike the built-in version)

• thus, it doesn't need to return anything

‘f’‘f’ ‘i’‘i’ ‘n’‘n’
str

null

‘e’

null

‘e’

‘F’‘F’ ‘I’‘I’ ‘N’‘N’
str

null

‘E’

null

‘E’

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 399

Example of Iterative Traversal (cont.)

• toUpperCase(str): converting str to all upper-case letters

• Here's the method:

public static void toUpperCase(StringNode str) {
StringNode trav = str;
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch);
trav = trav.next;

}
}

• uses a built-in static method from the Character class
to convert a single char to upper case

‘f’‘f’ ‘i’‘i’ ‘n’‘n’
str

null

‘e’

null

‘e’

‘F’‘F’ ‘I’‘I’ ‘N’‘N’
str

null

‘E’

null

‘E’

Tracing toUpperCase(): Before the Loop

Calling StringNode.toUpperCase(str) adds a stack frame to the stack:

StringNode trav = str;

str

str

trav

'f' 'i' 'n'str 'e'

null

'f' 'i' 'n' 'e'

null

str

str

trav

'f' 'i' 'n' 'e'

null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 400

Tracing toUpperCase(): First Iteration of Loop
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch);
trav = trav.next;

}

after updating trav.ch:

after updating trav:

str

str

trav

'f' 'i' 'n' 'e'

null

'F'

str

str

trav

'f' 'i' 'n' 'e'

null

'F'

Tracing toUpperCase(): Second Iteration
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch);
trav = trav.next;

}

after updating trav.ch:

after updating trav:

str

str

trav

'F' 'i' 'n' 'e'

null

'I'

str

str

trav

'F' 'I' 'n' 'e'

null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 401

Tracing toUpperCase(): Third Iteration
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch);
trav = trav.next;

}

after updating trav.ch:

after updating trav:

str

str

trav

'F' 'I' 'N' 'e'

null

str

str

trav

'F' 'I' 'n' 'e'

null

'N'

Tracing toUpperCase(): Fourth Iteration
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch);
trav = trav.next;

}

after updating trav.ch:

after updating trav:

str

str

trav

'F' 'I' 'N' 'E'

null

str

str

trav

'F' 'I' 'N' 'e'

null

'E'

null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 402

Tracing toUpperCase(): Finishing Up
while (trav != null) {

trav.ch = Character.toUpperCase(trav.ch);
trav = trav.next;

}

results of the final iteration:

and now trav == null, so we end the loop and return:

str

str

trav

'F' 'I' 'N' 'e'

null

str 'F' 'I' 'N' 'E'

null

'E'

null

Getting the Node at Position i in a Linked List

• getNode(str, i) – should return a reference to the ith node
in the linked list to which str refers

• Examples:

• getNode(str, 0) should return a ref. to the 'f' node

• getNode(str, 3) should return a ref. to the 'e' node

• getNode(str.next, 2) should return a ref. to…?

• More generally, when 0 < i < length of list,
getNode(str, i) is equivalent to getNode(str.next, i-1)

'f' 'i' 'n'
str

'e'

null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 403

Getting the Node at Position i in a Linked List

• Recursive approach to getNode(str, i):

• if i == 0, return str (base case)

• else call getNode(str.next, i-1) and return what it returns!

• other base case?

• Here's the method:

private static StringNode getNode(StringNode str, int i) {
if (i < 0 || str == null) { // base case 1: no node i

return null;
} else if (i == 0) { // base case 2: just found

return str;
} else {

return getNode(str.next, i-1);
}

}

'f' 'i' 'n'
str

'e'

null

Deleting the Item at Position i

• Special case: i == 0 (deleting the first item)

• Update our reference to the first node by doing:
str = str.next;

'j' 'a'str 'v'x 'a'

null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 404

Deleting the Item at Position i (cont.)

• General case: i > 0

1. Obtain a reference to the previous node:
StringNode prevNode = getNode(str, i - 1);

'j' 'a' 'v'

prevNode

(example for i == 1)

str 'a'

null

Deleting the Item at Position i (cont.)

• General case: i > 0

2. Update the references to remove the node

_____________ = __________________;

'j' 'a' 'v'

prevNode

(example for i == 1)

str

'j' 'a' 'v'

prevNode

str

'a'

null

'a'

null

before:

after:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 405

Inserting an Item at Position i

• Special case: i == 0 (insertion at the front of the list)

• Step 1: Create the new node. Fill in the blanks!

StringNode newNode = new StringNode(_______, _______);

'a' 'c'str 'e'

null

'f'ch
before:

'a' 'c'str 'e'

null

newNode

'f'
'f'ch

after:

Inserting an Item at Position i (cont.)

• Special case: i == 0 (continued)

• Step 2: Insert the new node. Write the assignment!

'a' 'c'str 'e'

null

newNode

'f'ch

before (result of previous slide):

'a' 'c'str 'e'

null

newNode

'f'
'f'ch

after:

'f'

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 406

Inserting an Item at Position i (cont.)

• General case: i > 0 (insert before the item currently in posn i)

StringNode prevNode = getNode(str, i - 1);

StringNode newNode = new StringNode(ch, ________________);

___________________________________ // one more line

before:

after (assume that i == 2): 'm'

'a' 'c'
str

'e'

null

'm'ch

prevNode

'a' 'c'
str

'e'

null

newNode

'm'ch

x

Returning a Reference to the First Node

• Both deleteChar() and insertChar() return a reference to
the first node in the linked list. For example:

public static StringNode deleteChar(StringNode str, int i) {
…
if (i == 0) { // special case

str = str.next;
} else { // general case

StringNode prevNode = getNode(str, i-1);
if (prevNode != null && prevNode.next != null) {

prevNode.next = prevNode.next.next;
…

}

return str;
}

• Clients should call them as part of an assignment:
s1 = StringNode.deleteChar(s1, 0);
s2 = StringNode.insertChar(s2, 0, 'h');

• If the first node changes, the client's variable will be updated
to point to the new first node.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 407

Creating a Copy of a Linked List

• copy(str) – create a copy of the entire list to which str refers

• Recursive approach:
• base case: if str is empty, return null
• else: – make a recursive call to copy the rest of the linked list

– create and return a copy of the first node,
with its next field pointing to the copy of the rest

public static StringNode copy(StringNode str) {
if (str == null) { // base case

return null;
}

// make a recursive call to copy the rest of the list
StringNode copyRest = copy(str.next);

// create and return a copy of the first node,
// with its next field pointing to the copy of the rest
return new StringNode(str.ch, copyRest);

}

Tracing copy(): the initial call

• From a client: StringNode s2 = StringNode.copy(s1);

s2

copyRest

str

'd' 'o' 'g'

nulls1

stack heap

public static StringNode copy(StringNode str) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 408

Tracing copy(): the initial call

• From a client: StringNode s2 = StringNode.copy(s1);

s2

copyRest

str

'd' 'o' 'g'

nulls1

public static StringNode copy(StringNode str) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

}

Tracing copy(): the initial call

• From a client: StringNode s2 = StringNode.copy(s1);

s2

copyRest

str

'd' 'o' 'g'

nulls1

copyRest

str

public static StringNode copy(StringNode str) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch, copyRest);

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 409

Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 410

Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 411

Tracing copy(): the recursive calls

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

null

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

Tracing copy(): the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

null

copyRest

str

s1

heap

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 412

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

nullcopyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

null 'g'

null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 413

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

'g'

null

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

copyRest

str

'g'

null

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

'o'

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 414

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

'g'

null

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

'o'

Tracing copy(): returning from the base case

s2

copyRest

str

'd' 'o' 'g'

null

'o'

'g'

null

s1

public static StringNode copy(...) {
if (str == null) {

return null;
}

StringNode copyRest = copy(str.next);
return new StringNode(str.ch,

copyRest);
}

'd'

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 415

Tracing copy(): returning from the base case

s2 'd' 'o' 'g'

null

'o'

'g'

null

s1

• From a client: StringNode s2 = StringNode.copy(s1);

'd'

Tracing copy(): Final Result

• s2 now holds a reference to a linked list that is a copy of the
linked list to which s1 holds a reference.

s2 'd' 'o' 'g'

null

'd'

'o'

'g'

null

s1

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 416

Using a "Trailing Reference" During Traversal

• When traversing a linked list, one trav may not be enough.

• Ex: insert ch = 'n' at the right place in this sorted linked list:

• Traverse the list to find the right position:
StringNode trav = str;
while (trav != null && trav.ch < ch) {

trav = trav.next;
}

• When we exit the loop, where will trav point? Can we insert 'n'?

• The following changed version doesn't work either. Why not?
while (trav != null && trav.next.ch < ch) {

trav = trav.next;
}

‘a’‘a’ ‘c’‘c’ ‘p’‘p’
str

trav

null

‘z’

null

‘z’

Using a "Trailing Reference" (cont.)

• To get around the problem seen on the previous page,
we traverse the list using two different references:

• trav, which we use as before
• trail, which stays one node behind trav

StringNode trav = str;
StringNode trail = null;
while (trav != null && trav.ch < ch) {

trail = trav;
trav = trav.next;

}
// if trail == null, insert at the front of the list
// else insert after the node to which trail refers

'a' 'c' 'p'
str

'z'

null

travnulltrail

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 417

Using a "Trailing Reference" (cont.)

• To get around the problem seen on the previous page,
we traverse the list using two different references:

• trav, which we use as before
• trail, which stays one node behind trav

StringNode trav = str;
StringNode trail = null;
while (trav != null && trav.ch < ch) {

trail = trav;
trav = trav.next;

}
// if trail == null, insert at the front of the list
// else insert after the node to which trail refers

'a' 'c' 'p'
str

'z'

null

travtrail

Using a "Trailing Reference" (cont.)

• To get around the problem seen on the previous page,
we traverse the list using two different references:

• trav, which we use as before
• trail, which stays one node behind trav

StringNode trav = str;
StringNode trail = null;
while (trav != null && trav.ch < ch) {

trail = trav;
trav = trav.next;

}
// if trail == null, insert at the front of the list
// else insert after the node to which trail refers

'a' 'c' 'p'
str

'z'

null

travtrail

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 418

Doubly Linked Lists

• In a doubly linked list, every node stores two references:

• next, which works the same as before

• prev, which holds a reference to the previous node
• in the first node, prev has a value of null

• The prev references allow us to "back up" as needed.

• remove the need for a trailing reference during traversal!

• Insertion and deletion must update both types of references.

Find the address and value of s.next.next.ch

address value

A. 0xbe00 'r'

B. 0x3004 'e'

C. 0xbb00 'a'

D. none of these

Extra practice!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 419

Find the address and value of s.next.next.ch

address value

A. 0xbe00 'r'

B. 0x3004 'e'

C. 0xbb00 'a'

D. none of these

• s.next is the next field in the node to which s refers

• it holds a reference to the 'r' node

• thus, s.next.next is the next field in the 'r' node

• it holds a reference to the 'e' node

• thus, s.next.next.ch is the ch field in the 'e' node

• it holds the 'e'!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 420

Lists, Stacks, and Queues

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 8, Part 2

Representing a Sequence: Arrays vs. Linked Lists

• Sequence – an ordered collection of items (position matters)

• we will look at several types: lists, stacks, and queues

• Can represent any sequence using an array or a linked list

array linked list

representation
in memory

elements occupy consecutive
memory locations

nodes can be at arbitrary
locations in memory; the links
connect the nodes together

advantages • provide random access
(access to any item in
constant time)

• no extra memory needed for
links

• can grow to an arbitrary length

• allocate nodes as needed

• inserting or deleting does not
require shifting items

disadvantages • have to preallocate the
memory needed for the
maximum sequence size

• inserting or deleting can
require shifting items

• no random access (may need
to traverse the list)

• need extra memory for links

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 421

The List ADT

• A list is a sequence in which items can be accessed,
inserted, and removed at any position in the sequence.

• The operations supported by our List ADT:

• getItem(i): get the item at position i

• addItem(item, i): add the specified item at position i

• removeItem(i): remove the item at position i

• length(): get the number of items in the list

• isFull(): test if the list already has the maximum number
of items

• Note that we don’t specify how the list will be implemented.

Our List Interface
public interface List {

Object getItem(int i);
boolean addItem(Object item, int i);
Object removeItem(int i);
int length();
boolean isFull();

}

• Recall that all methods in an interface must be public ,
so we don’t need the keyword public in the headers.

• We use the Object type to allow for items of any type.

• addItem() returns false if the list is full, and true otherwise.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 422

Implementing a List Using an Array
public class ArrayList implements List {

private Object[] items;
private int length;

public ArrayList(int maxSize) {
// code to check for invalid maxSize goes here...
this.items = new Object[maxSize];
this.length = 0;

}

public int length() {
return this.length;

}

public boolean isFull() {
return (this.length == this.items.length);

}
...

}

null …

"if"

"for"

list

a variable of type
ArrayList an ArrayList object

items

length 2

Recall: The Implicit Parameter
public class ArrayList implements List {

private Object[] items;
private int length;

public ArrayList(int maxSize) {
this.items = new Object[maxSize];
this.length = 0;

}

public int length() {
return this.length;

}

public boolean isFull() {
return (this.length == this.items.length);

}
...

}

• All non-static methods have an implicit parameter (this)
that refers to the called object.

• In most cases, we're allowed to omit it!
• we'll do so in the remaining notes

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 423

Omitting The Implicit Parameter
public class ArrayList implements List {

private Object[] items;
private int length;

public ArrayList(int maxSize) {
items = new Object[maxSize];
length = 0;

}

public int length() {
return length;

}

public boolean isFull() {
return (length == items.length);

}
...

}

• In a non-static method, if we use a variable that
• isn't declared in the method
• has the name of one of the fields

Java assumes that we're using the field.

Adding an Item to an ArrayList
• Adding at position i (shifting items i, i+1, … to the right by one):

public boolean addItem(Object item, int i) {
if (item == null || i < 0 || i > length) {

throw new IllegalArgumentException();
} else if (isFull()) {

return false;
}

// make room for the new item
for (int j = length - 1; j >= i; j--) {

items[j + 1] = items[j];
}

items[i] = item;
length++;
return true;

}

30 1 2

items

length 6

74 5 6 8
example for i = 3:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 424

Adding an Item to an ArrayList
• Adding at position i (shifting items i, i+1, … to the right by one):

public boolean addItem(Object item, int i) {
if (item == null || i < 0 || i > length) {

throw new IllegalArgumentException();
} else if (isFull()) {

return false;
}

// make room for the new item
for (int j = length - 1; j >= i; j--) {

items[j + 1] = items[j];
}

items[i] = item;
length++;
return true;

}

30 1 2

items

length 7

74 5 6 8
example for i = 3:

Removing an Item from an ArrayList
• Removing item i (shifting items i+1, i+2, … to the left by one):

public Object removeItem(int i) {
if (i < 0 || i >= length) {

throw new IndexOutOfBoundsException();
}
Object removed = items[i];

// shift items after items[i] to the left
for (int j = i; j < length - 1; j++) {

____________________________;
}
items[length - 1] = null;

length--;
return removed;

}

items

length 5

3

null null null null

0 1 2 74 5 6 8

"Dave"

"Kylie"

example for i = 1:

removed

"Cody" "Ash"
"Libby"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 425

Getting an Item from an ArrayList
• Getting item i (without removing it):

public Object getItem(int i) {
if (i < 0 || i >= length) {

throw new IndexOutOfBoundsException();
}
return items[i];

}

toString() Method for the ArrayList Class
public String toString() {

String str = "{";

if (length > 0) {
for (int i = 0; i < length - 1; i++) {

str = str + items[i] + ", ";
}
str = str + items[length - 1];

}

str = str + "}";

return str;
}

• Produces a string of the following form:
{items[0], items[1], … }

• Why is the last item added outside the loop?

• Why do we need the if statement?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 426

list

Implementing a List Using a Linked List
public class LLList implements List {

private Node head;
private int length;
...

}

• Differences from the linked lists we used for strings:

• we "embed" the linked list inside another class
• users of our LLList class won't actually touch the nodes

• we use non-static methods instead of static ones
myList.length() instead of length(myList)

• we use a special dummy head node as the first node

variable of type
LLList LLList object

length 3

head
null "how" "are" "you"

null

Node objects

dummy head node

Using a Dummy Head Node

• The dummy head node is always at the front of the linked list.

• like the other nodes in the linked list, it’s of type Node

• it does not store an item

• it does not count towards the length of the list

• Using it allows us to avoid special cases when adding and
removing nodes from the linked list.

• An empty LLList still has a dummy head node:

length 0

head

LLList object

length 3

head
null "how" "are" "you"

null

dummy head node

null

null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 427

An Inner Class for the Nodes
public class LLList implements List {

private class Node {
private Object item;
private Node next;

private Node(Object i, Node n) {
item = i;
next = n;

}
}
...

}

• We make Node an inner class, defining it within LLList.
• allows the LLList methods to directly access Node’s private

fields, while restricting access from outside LLList
• the compiler creates this class file: LLList$Node.class

• For simplicity, our diagrams may show the items inside the nodes.

instead of

"hi"

next

item

"hi" "hi"

Node object
private

since only
LLList

will use it

Other Details of Our LLList Class
public class LLList implements List {

private class Node {
// see previous slide

}

private Node head;
private int length;

public LLList() {
head = new Node(null, null);
length = 0;

}

public boolean isFull() {
return false;

}
...

}

• Unlike ArrayList, there’s no need to preallocate space for the
items. The constructor simply creates the dummy head node.

• The linked list can grow indefinitely, so the list is never full!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 428

Getting a Node

• Private helper method for getting node i
• to get the dummy head node, use i = -1

private Node getNode(int i) {
// private method, so we assume i is valid!

Node trav = ;
int travIndex = -1;

while () {
travIndex++;

;
}

return trav;
}

length 3

head
null "how" "are" "you"

nullnext

item

LLList object Node objects

example for i = 1: 0 1 2-1

trav -1travIndex

Getting an Item
public Object getItem(int i) {

if (i < 0 || i >= length) {
throw new IndexOutOfBoundsException();

}

Node n = getNode(i);

return ________;
}

length 3

head
null "how" "are" "you"

null

0 1 2-1

next

item

LLList object Node objects

example for i = 1:
n

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 429

Adding an Item to an LLList
public boolean addItem(Object item, int i) {

if (item == null || i < 0 || i > length) {
throw new IllegalArgumentException();

}
Node newNode = new Node(item, null);
Node prevNode = getNode(i - 1);
newNode.next = prevNode.next;
prevNode.next = newNode;

length++;
return true;

}

• This works even when adding at the front of the list (i = 0):

length 3

head
null "how" "are"

next

item "you"

null

prevNode

newNode

"hi!"

null

x

0 1 2-1

4

addItem() Without a Dummy Head Node
public boolean addItem(Object item, int i) {

if (item == null || i < 0 || i > length) {
throw new IllegalArgumentException();

}
Node newNode = new Node(item, null);

if (i == 0) { // case 1: add to front
newNode.next = head;
head = newNode;

} else { // case 2: i > 0
Node prevNode = getNode(i - 1);
newNode.next = prevNode.next;
prevNode.next = newNode;

}

length++;
return true;

}

(the gray code shows what we would need to add if we didn't have a dummy head node)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 430

Removing an Item from an LLList

length 3

head
null

next

item

null

prevNode

x

0 1 2-1

"how" "are" "you"removed

public Object removeItem(int i) {
if (i < 0 || i >= length) {

throw new IndexOutOfBoundsException();
}
Node prevNode = getNode(i - 1);
Object removed = prevNode.next.item;

// what line goes here?

length--;
return removed;

}

• This works even when removing the first item (i = 0):

toString() Method for the LLList Class
public String toString() {

String str = "{";

// what should go here?

str = str + "}";

return str;
}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 431

best:

worst:

average:

Efficiency of the List ADT Implementations

best:
worst:

average:

only one case:getItem()

best:

worst:

average:

addItem()

LLListArrayList

n = number of items in the list

LLList object

length 99

head
null "hey" "are"

null

"how"

…

last

mylist.addItem("you", 99)

Example of Using a Reference to the Last Node

• before the call is made:

length 99

head
null "hey" "are" "you"

null

"how"

…

last

• use last to add the new item's node to the end of the linked list:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 432

LLList object

length 100

head
null "hey" "are" "you"

null

"how"

…

last

mylist.addItem("you", 99)

Example of Using a Reference to the Last Node (cont.)

• after the call is made:

best:

worst:

average:

best:

worst:

average:

Efficiency of the List ADT Implementations (cont.)

space
efficiency

removeItem()

LLListArrayList

n = number of items in the list

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 433

LLList object

length 100

head
null "hey" "are" "you"

null

"how"

…

last

beforeLast

mylist.removeItem(99)

A Reference to the Second-to-Last Node Doesn't Help

• before the call is made:

length 99

head
null "hey" "are"

null

"you"

null

"how"

…

last

beforeLast

• we can use beforeLast to remove the last node and update last:

length 99

head
null "hey" "are"

null

"how"

…

last

beforeLast

LLList object

A Reference to the Second-to-Last Node Doesn't Help

• but in order to update beforeLast, we need to walk down the linked list!

mylist.removeItem(99)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 434

Counting the Number of Occurrences of an Item
public class MyClass {

public static int numOccur(List l, Object item) {
int numOccur = 0;
for (int i = 0; i < l.length(); i++) {

Object itemAt = l.getItem(i);
if (itemAt.equals(item)) {

numOccur++;
}

}
return numOccur;

} ...

• This method works fine if we pass in an ArrayList object.

• time efficiency (as a function of the length, n) = ?

• However, it's not efficient if we pass in an LLList.

• each call to getItem() calls getNode()
• to access item 0, getNode() accesses 2 nodes (dummy + node 0)

• to access item 1, getNode() accesses 3 nodes
• to access item i, getNode() accesses i+2 nodes
• 2 + 3 + … + (n+1) = ?

Solution: Provide an Iterator
public class MyClass {

public static int numOccur(List l, Object item) {
int numOccur = 0;
ListIterator iter = l.iterator();
while (iter.hasNext()) {

Object itemAt = iter.next();
if (itemAt.equals(item)) {

numOccur++;
}

}
return numOccur;

} ...

• We add an iterator() method to the List interface.

• it returns a separate iterator object that can efficiently
iterate over the items in the list

• The iterator has two key methods:

• hasNext(): tells us if there are items we haven't seen yet

• next(): returns the next item and advances the iterator

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 435

An Interface for List Iterators

• Here again, the interface only includes the method headers:
public interface ListIterator { // in ListIterator.java

boolean hasNext();
Object next();

}

• We can then implement this interface for each type of list:

• LLListIterator for an iterator that works with LLLists

• ArrayListIterator for an iterator for ArrayLists

• We use the interfaces when declaring variables in client code:

public class MyClass {
public static int numOccur(List l, Object item) {

int numOccur = 0;
ListIterator iter = l.iterator();
...

• doing so allows the code to work for any type of list!

Using an Inner Class for the Iterator
public class LLList {

private Node head;
private int length;

private class LLListIterator implements ListIterator {
private Node nextNode; // points to node with the next item

public LLListIterator() {
nextNode = head.next; // skip over dummy head node

}
...

}

public ListIterator iterator() {
return new LLListIterator();

}
...

• Using an inner class gives the iterator access to the list’s internals.

• The iterator() method is an LLList method.
• it creates an instance of the inner class and returns it
• its return type is the interface type

• so it will work in the context of client code

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 436

Full LLListIterator Implementation
private class LLListIterator implements ListIterator {

private Node nextNode; // points to node with the next item

public LLListIterator() {
nextNode = head.next; // skip over the dummy head node

}

public boolean hasNext() {
return (nextNode != null);

}

public Object next() {
// throw an exception if nextNode is null

Object item = _______________;

nextNode = _______________;

return item;
}

}

length 3

head
next

item

nextNode

LLList

object

LLListIterator object

null

null

"how" "are" "you"

Stack ADT

• A stack is a sequence in which:

• items can be added and removed only at one end (the top)

• you can only access the item that is currently at the top

• Operations:

• push: add an item to the top of the stack

• pop: remove the item at the top of the stack

• peek: get the item at the top of the stack, but don’t remove it

• isEmpty: test if the stack is empty

• isFull: test if the stack is full

• Example: a stack of integers

15

7

start: 8

15

7

push 8:

15

7

pop:

7

pop:

3

7

push 3:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 437

A Stack Interface: First Version
public interface Stack {

boolean push(Object item);
Object pop();
Object peek();
boolean isEmpty();
boolean isFull();

}

• push() returns false if the stack is full, and true otherwise.

• pop() and peek() take no arguments, because we know that
we always access the item at the top of the stack.

• return null if the stack is empty.

• The interface provides no way to access/insert/delete an item
at an arbitrary position.

• encapsulation allows us to ensure that our stacks are
only manipulated in appropriate ways

public class ArrayStack implements Stack {
private Object[] items;
private int top; // index of the top item

public ArrayStack(int maxSize) {
// code to check for invalid maxSize goes here...
items = new Object[maxSize];
top = -1;

}
...

• Example: the stack

• Items are added from left to right (top item = the rightmost one).

• push() and pop() won't require any shifting!

s1

Implementing a Stack Using an Array: First Version

ArrayStack object

items

top

null

1

…

7

15

0 1 2

15

7

variable of type
ArrayStack

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 438

public class ArrayStack implements Stack {
private Object[] items;
private int top; // index of the top item
...

}

• So far, our collections have allowed us to add objects of any type.
ArrayStack s1 = new ArrayStack(4);
s1.push(7); // 7 is turned into an Integer object for 7
s1.push("hi");
String item = s1.pop(); // won't compile
String item = (String)s1.pop(); // need a type cast

• We'd like to be able to limit a given collection to one type.
ArrayStack<String> s2 = new ArrayStack<String>(10);
s2.push(7); // won't compile
s2.push("hello");
String item = s2.pop(); // no cast needed!

items

top
s1

Collection Classes and Data Types

null

1

null

7 "hi"

0 1 2 3

Limiting a Stack to Objects of a Given Type

• We can do this by using a generic interface and class.

• Here's a generic version of our Stack interface:
public interface Stack<T> {

boolean push(T item);
T pop();
T peek();
boolean isEmpty();
boolean isFull();

}

• It includes a type variable T in its header and body.

• used as a placeholder for the actual type of the items

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 439

A Generic ArrayStack Class
public class ArrayStack<T> implements Stack<T> {

private T[] items;
private int top; // index of the top item
…
public boolean push(T item) {

…
}
…

}

• Once again, a type variable T is used as a placeholder for the
actual type of the items.

• When we create an ArrayStack, we specify the type of items
that we intend to store in the stack:

ArrayStack<String> s1 = new ArrayStack<String>(10);
ArrayStack<Integer> s2 = new ArrayStack<Integer>(25);

• We can still allow for a mixed-type collection:
ArrayStack<Object> s3 = new ArrayStack<Object>(20);

ArrayStack<String> s1 =
new ArrayStack<String>(10);

ArrayStack<Integer> s2 =
new ArrayStack<Integer>(25);

Using a Generic Class

public class ArrayStack<T> ... {
private T[] items;
private int top;
...
public boolean push(T item) {

...

public class ArrayStack<String> {
private String[] items;
private int top;
...
public boolean push(String item) {

...

public class ArrayStack<Integer> {
private Integer[] items;
private int top;
...
public boolean push(Integer item) {

...

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 440

ArrayStack Constructor

• Java doesn’t allow you to create an object or array using
a type variable. Thus, we cannot do this:

public ArrayStack(int maxSize) {
// code to check for invalid maxSize goes here...
items = new T[maxSize]; // not allowed
top = -1;

}

• Instead, we do this:
public ArrayStack(int maxSize) {

// code to check for invalid maxSize goes here...
items = (T[])new Object[maxSize];
top = -1;

}

• The cast generates a compile-time warning, but we’ll ignore it.

• Java’s built-in ArrayList class takes this same approach.

Testing if an ArrayStack is Empty or Full

• Empty stack:

public boolean isEmpty() {
return (top == -1);

}

• Full stack:

public boolean isFull() {
return (top == items.length - 1);

}

0 1 2

items

top -1

3 4 5 6 7 8

0 1 2

items

top 8

3 4 5 6 7 8

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 441

Pushing an Item onto an ArrayStack

public boolean push(T item) {
// code to check for a null item goes here
if (isFull()) {

return false;
}
top++;
items[top] = item;
return true;

}

items

top 4

0 1 2 3 4 5 6 7 8

ArrayStack pop() and peek()

public T pop() {
if (isEmpty()) {

return null;
}

______ removed = items[top];
items[top] = null;
top--;
return removed;

}

• peek just returns items[top] without decrementing top.

removed

null null null null

10 5 9 13

items

top 3

0 1 2 3 4 5 6 7

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 442

Implementing a Generic Stack Using a Linked List
public class LLStack<T> implements Stack<T> {

private Node top; // top of the stack
…

}

• Example: the stack

• Things worth noting:

• our LLStack class needs only a single field:
a reference to the first node, which holds the top item

• top item = leftmost item (vs. rightmost item in ArrayStack)

• we don’t need a dummy node
• only one case: always insert/delete at the front of the list!

variable of type
LLStack

LLStack object

s2
top

null

Node objects

7

15

7
15

Other Details of Our LLStack Class
public class LLStack<T> implements Stack<T> {

private class Node {
private T item;
private Node next;
...

}

private Node top;

public LLStack() {
top = null;

}
public boolean isEmpty() {

return (top == null);
}
public boolean isFull() {

return false;
}

}

• The inner Node class uses the type parameter T for the item.

• We don’t need to preallocate any memory for the items.

• The stack is never full!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 443

LLStack push()

public boolean push(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, top);
top = newNode;
return true;

}

null

newNode

15 7

8item

top

LLStack push()

public boolean push(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, top);
top = newNode;
return true;

}

null

newNode

15 7

8item

top x

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 444

LLStack pop() and peek()

public T pop() {
if (isEmpty()) {

return null;
}

T removed = _______________;

____________________________;
return removed;

}

public T peek() {
if (isEmpty()) {

return null;
}
return top.item;

}

top
null

removed 15 7

x

Efficiency of the Stack Implementations

ArrayStack LLStack

push() O(1) O(1)

pop() O(1) O(1)

peek() O(1) O(1)

space
efficiency

O(m) where m is the
anticipated maximum number
of items

O(n) where n is the number of
items currently on the stack

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 445

Applications of Stacks

• Converting a recursive algorithm to an iterative one

• use a stack to emulate the runtime stack

• Making sure that delimiters (parens, brackets, etc.) are balanced:

• push open (i.e., left) delimiters onto a stack

• when you encounter a close (i.e., right) delimiter,
pop an item off the stack and see if it matches

• example:
5 * [3 + {(5 + 16 – 2)]

• Evaluating arithmetic expressions

[

push [

{

[

push { (

{

[

push (

{

[

), so
pop.

get (,
which

matches
[

], so
pop.

get {,
which

doesn’t
match

Queue ADT

• A queue is a sequence in which:

• items are added at the rear and removed from the front
• first in, first out (FIFO) (vs. a stack, which is last in, first out)

• you can only access the item that is currently at the front

• Operations:

• insert: add an item at the rear of the queue

• remove: remove the item at the front of the queue

• peek: get the item at the front of the queue, but don’t remove it

• isEmpty: test if the queue is empty

• isFull: test if the queue is full

• Example: a queue of integers
start: 12 8

insert 5: 12 8 5

remove: 8 5

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 446

Our Generic Queue Interface
public interface Queue<T> {

boolean insert(T item);
T remove();
T peek();
boolean isEmpty();
boolean isFull();

}

• insert() returns false if the queue is full, and true otherwise.

• remove() and peek() take no arguments, because
we always access the item at the front of the queue.

• return null if the queue is empty.

• Here again, we will use encapsulation to ensure that the
data structure is manipulated only in valid ways.

Implementing a Queue Using an Array
public class ArrayQueue<T> implements Queue<T> {

private T[] items;
private int front;
private int rear;
private int numItems;

...
}

• Example:

• We maintain two indices:

• front: the index of the item at the front of the queue

• rear: the index of the item at the rear of the queue

73

0 1 2 3

5125

ArrayQueue object

items

front 1

3

3

rear

numItems

variable of type
ArrayQueue

queue

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 447

Avoiding the Need to Shift Items

• Problem: what do we do when we reach the end of the array?
example: a queue of integers:

the same queue after removing two items and inserting two:

we have room for more items, but shifting to make room is inefficient

• Solution: maintain a circular queue. When we reach the end of
the array, we wrap around to the beginning.

insert 5: wrap around!

54 4 21 17 89 65

front rear

21 17 89 65 43 81

front

5 21 17 89 65 43 81

frontrear

rear

Maintaining a Circular Queue

• We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;

rear = (rear + 1) % items.length;

• Example:
21 17 89 43

front rear

q
items

front 1

4

4

rear

numItems

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 448

Maintaining a Circular Queue

• We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;

rear = (rear + 1) % items.length;

• Example:

• q.insert(81): // rear is not at end of array

• rear = (rear + 1) % items.length;
= (4 + 1) % 6
= 5 % 6 = 5 (% has no effect)

21 17 89 43 81

front rear

q
items

front 1

5

5

rear

numItems

Maintaining a Circular Queue

• We use the mod operator (%) when updating front or rear:
front = (front + 1) % items.length;

rear = (rear + 1) % items.length;

• Example:

• q.insert(81): // rear is not at end of array

• rear = (rear + 1) % items.length;
= (4 + 1) % 6
= 5 % 6 = 5 (% has no effect)

• q.insert(33): // rear is at end of array

• rear = (rear + 1) % items.length;
= (5 + 1) % 6
= 6 % 6 = 0 wrap around!

33 21 17 89 43 81

frontrear

q
items

front 1

0

6

rear

numItems

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 449

Inserting an Item in an ArrayQueue

front rear

before:

after:
front rear

• We increment rear before adding the item:

public boolean insert(T item) {
// code to check for a null item goes here
if (isFull()) {

return false;
}
rear = (rear + 1) % items.length;
items[rear] = item;
numItems++;
return true;

}

null

ArrayQueue remove()

public T remove() {
if (isEmpty()) {

return null;
}
T removed = _________________;

numItems--;
return removed;

}

front rear

before:

after:

front rear

10 5 9 13

10 5 9 13removed

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 450

Constructor
public ArrayQueue(int maxSize) {

// code to check for an invalid maxSize goes here...
items = (T[])new Object[maxSize];
front = 0;
rear = -1;
numItems = 0;

}

• When we insert the first item in a newly created ArrayQueue,
we want it to go in position 0. Thus, we need to:

• start rear at -1, since then it will be incremented to 0
and used to perform the insertion

• start front at 0, since it is not changed by the insertion

0 1

items

front 0

-1

0

rear

numItems

null null …

0 1

items

front 0

0

1

rear

numItems "hi"

null …

Testing if an ArrayQueue is Empty or Full

• In both empty and full queues, rear is one "behind" front:

• This is why we maintain numItems!

public boolean isEmpty() {
return (numItems == 0);

}

public boolean isFull() {
return (numItems == items.length);

}

frontrear

frontrear

5 36 21 17 89 65 43

frontrear

initial configuration:

after two insertions and
two removals:

after 7 more insertions:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 451

Implementing a Queue Using a Linked List
public class LLQueue<T> implements Queue<T> {

private Node front; // front of the queue
private Node rear; // rear of the queue
…

}

• Example:

• In a linked list, we can efficiently:

• remove the item at the front

• add an item to the rear (if we have a ref. to the last node)

• Thus, this implementation is simpler than the array-based one!

variable of type
LLQueue LLQueue object

rear
queue

front
next

item

null

Node objects

"hi" "how" "are" "you"

Other Details of Our LLQueue Class
public class LLQueue<T> implements Queue<T> {

private class Node {
private T item;
private Node next;
...

}

private Node front;
private Node rear;

public LLQueue() {
front = null;
rear = null;

}
public boolean isEmpty() {

return (front == null);
}
public boolean isFull() {

return false;
}
…

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 452

Inserting an Item in an Empty LLQueue

public boolean insert(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, null);
if (isEmpty()) {

front = newNode;
rear = newNode;

} else {
// we'll add this later!

}
return true;

}

rear

front

newNode
null

"now"item

null

null

The next field in the newNode
will be null regardless of whether
the queue is empty. Why?

public boolean insert(T item) {
// code to check for a null item goes here
Node newNode = new Node(item, null);
if (isEmpty()) {

front = newNode;
rear = newNode;

} else {

}
return true;

}

Inserting an Item in a Non-Empty LLQueue

rear

front

newNode

"now"

item

null

null

"hi" "how" "are" "you"

x

A. rear = newNode;
rear.next = newNode;

B. rear.next = newNode;
rear = newNode;

C. either A or B

D. neither A nor B

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 453

Removing from an LLQueue with One Item

public T remove() {
if (isEmpty()) {

return null;
}

T removed = _________________;
if (front == rear) { // removing the only item

front = null;
rear = null;

} else {
// we'll add this later

}

return removed;
}

rear

front
null

"hi"removed

Removing from an LLQueue with Two or More Items

public T remove() {
if (isEmpty()) {

return null;
}

T removed = _________________;
if (front == rear) { // removing the only item

front = null;
rear = null;

} else {

}

return removed;
}

rear

front

null

"hi" "how" "are" "you"removed

x

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 454

Efficiency of the Queue Implementations

ArrayQueue LLQueue

insert() O(1) O(1)

remove() O(1) O(1)

peek() O(1) O(1)

space
efficiency

O(m) where m is the
anticipated maximum number
of items

O(n) where n is the number of
items currently in the queue

Applications of Queues

• first-in first-out (FIFO) inventory control

• OS scheduling: processes, print jobs, packets, etc.

• simulations of banks, supermarkets, airports, etc.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 455

Binary Trees and Huffman Encoding

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 9, Part 1

Motivation: Implementing a Dictionary

• A data dictionary is a collection of data with two main operations:
• search for an item (and possibly delete it)
• insert a new item

• If we use a sorted list to implement it, efficiency = O(n).

• In the next few lectures, we’ll look at how we can use a tree
for a data dictionary, and we'll try to get better efficiency.

• We’ll also look at other applications of trees.

data structure searching for an item inserting an item

a list implemented using
an array

O(log n)
using binary search

O(n)
because we need to shift
items over

a list implemented using
a linked list

O(n)
using linear search

(binary search in a linked
list is O(n log n))

O(n)

(O(1) to do the actual
insertion, but O(n) to find
where it belongs)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 456

What Is a Tree?

• A tree consists of:
• a set of nodes
• a set of edges, each of which connects a pair of nodes

• Each node may have one or more data items.
• each data item consists of one or more fields
• key field = the field used when searching for a data item
• data items with the same key are referred to as duplicates

• The node at the "top" of the tree is called the root of the tree.

root

node

edge

• If a node N is connected to nodes directly below it in the tree:

• N is referred to as their parent

• they are referred to as its children.

• example: node 5 is the parent of nodes 10, 11, and 12

• Each node is the child of at most one parent.

• Nodes with the same parent are siblings.

Relationships Between Nodes
1

2 3 4 6

7 8 9

5

10 11 12

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 457

• A node’s ancestors are its parent, its parent’s parent, etc.

• example: node 9’s ancestors are 3 and 1

• A node’s descendants are its children, their children, etc.

• example: node 1’s descendants are all of the other nodes

Relationships Between Nodes (cont.)

1

2 3 4 5 6

7 8 9 10 11 12

Types of Nodes

• A leaf node is a node without children.

• An interior node is a node with one or more children.

1

2 3 4 5 6

7 8 9 10 11 12

13

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 458

A Tree is a Recursive Data Structure

• Each node in the tree is the root of a smaller tree!
• refer to such trees as subtrees to distinguish them from

the tree as a whole
• example: node 2 is the root of the subtree circled above
• example: node 6 is the root of a subtree with only one node

• We’ll see that tree algorithms often lend themselves to
recursive implementations.

1

2 3 4 5 6

7 8 9 10 11 12

13

Path, Depth, Level, and Height

• There is exactly one path (one sequence of edges) connecting
each node to the root.

• depth of a node = # of edges on the path from it to the root

• Nodes with the same depth form a level of the tree.

• The height of a tree is the maximum depth of its nodes.
• example: the tree above has a height of 2

depth = 2

level 1

level 0

level 2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 459

Binary Trees

• In a binary tree, nodes have at most two children.

• distinguish between them using the direction left or right

• Example:

• Recursive definition: a binary tree is either:
1) empty, or
2) a node (the root of the tree) that has:

• one or more pieces of data (the key, and possibly others)
• a left subtree, which is itself a binary tree
• a right subtree, which is itself a binary tree

26’s right child26’s left child

26’s left subtree 26’s right subtree

26

12 32

4 18 38

7 4’s right child

Which of the following is/are not true?

A. This tree has a height of 4.

B. There are 3 leaf nodes.

C. The 38 node is the right child of the 32 node.

D. The 12 node has 3 children.

E. more than one of the above are not true (which ones?)

26

12 32

4

7

18 38

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 460

Representing a Binary Tree Using Linked Nodes
public class LinkedTree {

private class Node {
private int key; // limit ourselves to int keys
private LLList data; // list of data for that key
private Node left; // reference to left child
private Node right; // reference to right child
…

}

private Node root;
…

}

Representing a Binary Tree Using Linked Nodes
public class LinkedTree {

private class Node {
private int key;
private LLList data;
private Node left;
private Node right;
…

}

private Node root;
…

}

26

12 32

4 18 38

7

32

null

26

12

38

null null

18

null null

4

null

7

null null

ref. to left child
(null if none)

key

left right

(not showing
data field)

ref. to right child
(null if none)

root

LinkedTree

object

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 461

Traversing a Binary Tree

• Traversing a tree involves visiting all of the nodes in the tree.

• visiting a node = processing its data in some way

• example: print the key

• We'll look at four types of traversals.

• each visits the nodes in a different order

• To understand traversals, it helps to remember that every node
is the root of a subtree.

32 is the root of
26’s right subtree

12 is the root of
26’s left subtree

26

12 32

4 18 38

7

4 is the root of
12’s left subtree

1: Preorder Traversal

• preorder traversal of the tree whose root is N:
1) visit the root, N
2) recursively perform a preorder traversal of N’s left subtree
3) recursively perform a preorder traversal of N’s right subtree

• preorder because a node is visited before its subtrees

• The root of the tree as a whole is visited first.

7

9

8 6

4

5

2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 462

Implementing Preorder Traversal
public class LinkedTree {

...
private Node root;

public void preorderPrint() {
if (root != null) {

preorderPrintTree(root);
}
System.out.println();

}
private static void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

• preorderPrintTree() is a static, recursive method that takes
the root of the tree/subtree that you want to print.

• preorderPrint() is a non-static "wrapper" method that makes
the initial call. It passes in the root of the entire tree.

Not always the
same as the root
of the entire tree.

Tracing Preorder Traversal
void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

root:
print 8

root:

root:

time

root:
print 9

root: root:
print 7

root:
print 4

root:

root:

root:

root:

root:

root:

root:

root:

root:
print 6

root:

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7

9

8 6

4

5

2

base case, since
neither recursive
call is made! we go back

up the tree
by returning!

order in which nodes are visited:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 463

Using Recursion for Traversals
void preorderPrintTree(Node root) {

System.out.print(root.key + " ");
if (root.left != null) {

preorderPrintTree(root.left);
}
if (root.right != null) {

preorderPrintTree(root.right);
}

}

root:
print 8

root:

root:

time

root:
print 9

root: root:
print 7

root:
print 4

root:

root:

root:

root:

root:

root:

root:

root:

root:
print 6

root:

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7

9

8 6

4

5

2

base case, since
neither recursive
call is made! we go back

up the tree
by returning!

• Using recursion allows us to easily go back up the tree.

• Using a loop would be harder. Why?

order in which nodes are visited:

2: Postorder Traversal

• postorder traversal of the tree whose root is N:
1) recursively perform a postorder traversal of N’s left subtree
2) recursively perform a postorder traversal of N’s right subtree
3) visit the root, N

• postorder because a node is visited after its subtrees

• The root of the tree as a whole is visited last.

7

9

8 6

4

5

2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 464

Implementing Postorder Traversal
public class LinkedTree {

…
private Node root;

public void postorderPrint() {
if (root != null) {

postorderPrintTree(root);
}
System.out.println();

}

private static void postorderPrintTree(Node root) {
if (root.left != null) {

postorderPrintTree(root.left);
}
if (root.right != null) {

postorderPrintTree(root.right);
}
System.out.print(root.key + " ");

}

• Note that the root is printed after the two recursive calls.

Tracing Postorder Traversal
void postorderPrintTree(Node root) {

if (root.left != null) {
postorderPrintTree(root.left);

}
if (root.right != null) {

postorderPrintTree(root.right);
}
System.out.print(root.key + " ");

}

root:

root:

root:

time

root:

root: root:

root:
print 4

root:

root:

root:

root:
print 8

root:

root:

root:

root:

root:
print 6

root:

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7

9

8 6

4

5

2

order in which nodes are visited:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 465

3: Inorder Traversal

• inorder traversal of the tree whose root is N:
1) recursively perform an inorder traversal of N’s left subtree
2) visit the root, N
3) recursively perform an inorder traversal of N’s right subtree

• The root of the tree as a whole is visited between its subtrees.

• We'll see later why this is called inorder traversal!

7

9

8 6

4

5

2

Implementing Inorder Traversal
public class LinkedTree {

…
private Node root;

public void inorderPrint() {
if (root != null) {

inorderPrintTree(root);
}
System.out.println();

}

private static void inorderPrintTree(Node root) {
if (root.left != null) {

inorderPrintTree(root.left);
}
System.out.print(root.key + " ");
if (root.right != null) {

inorderPrintTree(root.right);
}

}
}

• Note that the root is printed between the two recursive calls.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 466

Tracing Inorder Traversal
void inorderPrintTree(Node root) {

if (root.left != null) {
inorderPrintTree(root.left);

}
System.out.print(root.key + " ");
if (root.right != null) {

inorderPrintTree(root.right);
}

}

root:
print 8

root:

root:

time

root:

root: root:

root:
print 4

root:

root:

root:

root:

root:

root:

root:
print 9

root:

root:
print 6

root:

root:

...

7 7

9

7

9

7

9

7

9

7

9

7

9

8

4

8 8 6

7

9

8 6

4

5

2

order in which nodes are visited:

Level-Order Traversal

• Visit the nodes one level at a time, from top to bottom
and left to right.

• Level-order traversal of the tree above: 7 9 5 8 6 2 4

• We can implement this type of traversal using a queue.

7

9

8 6

4

5

2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 467

preorder: root, left subtree, right subtree

postorder: left subtree, right subtree, root

inorder: left subtree, root, right subtree

level-order: top to bottom, left to right

• Perform each type of traversal on the tree below:

Tree-Traversal Summary

9

15

23 8

6

7

10

12

2

5

35 26

• preorder traversal: A M P K L D H T

• inorder traversal: P M L K A H T D

• Draw the tree!

• What's one fact that we can easily determine from one
of the traversals?

Tree Traversal Puzzle

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 468

Using a Binary Tree for an Algebraic Expression

• We’ll restrict ourselves to fully parenthesized expressions
using the following binary operators: +, –, *, /

• Example: ((a + (3 * c)) - (d / 2))

• Leaf nodes are variables or constants.

• Interior nodes are operators.

• their children are their operands

-

+ /

a * 2

3 c

d

Traversing an Algebraic-Expression Tree

• Inorder gives conventional
algebraic notation.
• print ‘(’ before the recursive

call on the left subtree

• print ‘)’ after the recursive
call on the right subtree

• for tree at right: ((a + (b * c)) - (d / e))

• Preorder gives functional notation.

• print ‘(’s and ‘)’s as for inorder, and commas after the
recursive call on the left subtree

• for tree above: subtr(add(a, mult(b, c)), divide(d, e))

• Postorder gives the order in which the computation must be
carried out on a stack/RPN calculator.

• for tree above: push a, push b, push c, multiply, add,…

–

+

a *

b c

/

ed

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 469

Fixed-Length Character Encodings

• A character encoding maps each character to a number.

• Computers usually use fixed-length character encodings.

• ASCII - 8 bits per character

example: "bat" is stored in a text
file as the following sequence of bits:

01100010 01100001 01110100

• Unicode - 16 bits per character
(allows for foreign-language characters; ASCII is a subset)

• Fixed-length encodings are simple, because:

• all encodings have the same length

• a given character always has the same encoding

char dec binary

'a' 97 01100001

'b' 98 01100010

… … …

't' 116 01110100

A Problem with Fixed-Length Encodings

• They tend to waste space.

• Example: an English newspaper article with only:

• upper and lower-case letters (52 characters)

• spaces and newlines (2 characters)

• common punctuation (approx. 10 characters)

• total of 64 unique characters only need ___ bits

• We could gain even more space if we:

• gave the most common letters shorter encodings (3 or 4 bits)

• gave less frequent letters longer encodings (> 6 bits)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 470

Variable-Length Character Encodings

• Variable-length encodings compress a text file by:

• using encodings of different lengths for different characters

• assigning shorter encodings to frequently occurring characters

• Example: if we had only four characters

"test" would be encoded as
00 01 111 00  000111100

• Challenge: when reading a document, how do we determine
the boundaries between characters?

• how do we know how many bits the next character has?

• One requirement: no character's encoding can be the prefix of
another character's encoding (e.g., couldn't have 00 and 001).

e 01

o 100

s 111

t 00

Huffman Encoding

• One type of variable-length encoding

• Based on the actual character frequencies in a given document

• different documents have different encodings

• Huffman encoding uses a binary tree:

• to determine the encoding of each character

• to decode / decompress an encoded file
• putting it back into ASCII

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 471

Huffman Trees

• Example for a text with
only six characters:

• Left branches are labeled with a 0, right branches with a 1.

• Leaf nodes are characters.

• To get a character's encoding, follow the path from the root
to its leaf node.

• example: i = ?

t e

io a s

0 1

0

0 0

1

1

1

1

0

Building a Huffman Tree

1) Begin by reading through the text to determine the frequencies.

2) Create a list of nodes containing (character, frequency) pairs
for each character in the text – sorted by frequency.

3) Remove and "merge" the nodes with
the two lowest frequencies, forming a
new node that is their parent.

• left child = lowest frequency node

• right child = the other node

• frequency of parent = sum of the
frequencies of its children
• in this case, 11 + 23 = 34

'o'

11

'i'

23

'a'

25

's'

26

't'

27

'e'

40

'o'

11

'i'

23

-

34

means
null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 472

Building a Huffman Tree (cont.)

4) Add the parent to the list of nodes (maintaining sorted order):

5) Repeat steps 3 and 4 until there is only a single node in the list,
which will be the root of the Huffman tree.

'a'

25

's'

26

't'

27

'e'

40

'o'

11

'i'

23

-

34

Completing the Huffman Tree Example I

• Merge the two remaining nodes with the lowest frequencies:
'a'

25

's'

26

't'

27

-

34

'o'

11

'i'

23

'e'

40

't'

27

'a'

25

's'

26

-

51

-

34

'o'

11

'i'

23

'e'

40

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 473

Completing the Huffman Tree Example II

• Merge the next two nodes:

Completing the Huffman Tree Example II

• Merge again:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 474

Completing the Huffman Tree Example IV

• The next merge creates the final tree:

• Characters that appear more frequently end up higher in the tree,
and thus their encodings are shorter.

t

io

0 1

0

0

1

1
e

sa

0

0

1

1

The Shape of the Huffman Tree

• The tree on the last slide is fairly symmetric.

• This won't always be the case!

• depends on the character frequencies

• For example, changing the frequency of 'o' from 11 to 21
would produce the tree shown below:

• This is the tree that we'll use in the remaining slides.

t e

io a s

0 1

0

0 0

1

1

1

1

0

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 475

Huffman Encoding: Compressing a File

1) Read through the input file and build its Huffman tree.

2) Write a file header for the output file.

• include the character frequencies so the tree can be rebuilt
when the file is decompressed

3) Traverse the Huffman tree to create a table containing the
encoding of each character:

4) Read through the input file a second time, and write the
Huffman code for each character to the output file.

a

e

i

o

s

t

t e

io a s

0 1

0

0 0

1

1

1

1

0

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 101111110000111100
first character = i

t e

o a s

0 1

0

0 0

1

1

1

1

0

i

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 476

What are the next three characters?

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 101111110000111100
first character = i (101)

t e

io a s

0 1

0

0 0

1

1

1

1

0

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 477

Huffman Decoding: Decompressing a File

1) Read the frequency table from the header and rebuild the tree.

2) Read one bit at a time and traverse the tree, starting from the root:

when you read a bit of 1, go to the right child
when you read a bit of 0, go to the left child
when you reach a leaf node, record the character,

return to the root, and continue reading bits

The tree allows us to easily overcome the challenge of
determining the character boundaries!

example: 101111110000111100
101 = right,left,right = i
111 = right,right,right= s
110 = right,right,left = a

00 = left,left = t
01 = left,right = e

111 = right,right,right= s
00 = left,left = t

t e

io a s

0 1

0

0 0

1

1

1

1

0

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 478

Search Trees

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 9, Part 2

Binary Search Trees

• Search-tree property: for each node k (k is the key):
• all nodes in k ’s left subtree are < k
• all nodes in k ’s right subtree are >= k

• Our earlier binary-tree example is
a search tree:

• With a search tree, an inorder traversal visits the nodes in order!

• in order of increasing key values

26

12 32

4 18 38

7

k

< k

< 26  26

< 12

k

 12

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 479

Searching for an Item in a Binary Search Tree

• Algorithm for searching for an item with a key k:

if k == the root node’s key, you’re done
else if k < the root node’s key, search the left subtree
else search the right subtree

• Example: search for 7

26

12 32

4 18 38

7

Implementing Binary-Tree Search
public class LinkedTree { // Nodes have keys that are ints

…
private Node root;

public LLList search(int key) { // "wrapper method"
Node n = searchTree(root, key); // get Node for key
if (n == null) {

return null; // no such key
} else {

return n.data; // return list of values for key
}

}

private static Node searchTree(Node root, int key) {
if () {

} else if () {

} else if () {

} else {

}
}

two base cases
(order matters!)

two
recursive cases

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 480

Inserting an Item in a Binary Search Tree

• public void insert(int key, Object data)

will add a new (key, data) pair to the tree

• Example 1: a search tree containing student records

• key = the student's ID number (an integer)

• data = a string with the rest of the student record

• we want to be able to write client code that looks like this:
LinkedTree students = new LinkedTree();
students.insert(23, "Jill Jones,sophomore,comp sci");
students.insert(45, "Al Zhang,junior,english");

• Example 2: a search tree containing scrabble words

• key = a scrabble score (an integer)

• data = a word with that scrabble score
LinkedTree tree = new LinkedTree();
tree.insert(4, "lost");

Inserting an Item in a Binary Search Tree (cont.)

• To insert an item (k, d),
we start by searching for k.

• If we find a node with key k, we add
d to the list of data values for that node.

• example: tree.insert(4, "sail")

• If we don’t find k, the last node seen
in the search becomes the parent P
of the new node N.

• if k < P’s key, make N the left child of P

• else make N the right child of P

• Special case: if the tree is empty,
make the new node the root of the tree.

• Important: The resulting tree is still a search tree!

26

12 32

4 18 38

7 35

P

example:
tree.insert(35,

"photooxidizes")

N

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 481

Implementing Binary-Tree Insertion

• We'll implement part of the insert() method together.

• We'll use iteration rather than recursion.

• Our method will use two references/pointers:

• trav: performs the traversal down
to the point of insertion

• parent: stays one behind trav

• like the trail reference that we
sometimes use when traversing
a linked list

26

12 32

4 18 38

7

parent

trav

Implementing Binary-Tree Insertion
public void insert(int key, Object data) {

Node parent = null;
Node trav = root;
while (trav != null) {

if (trav.key == key) {
trav.data.addItem(data, 0);
return;

}
// what should go here?

}
Node newNode = new Node(key, data);
if (root == null) { // the tree was empty

root = newNode;
} else if (key < parent.key) {

parent.left = newNode;
} else {

parent.right = newNode;
}

}

26

12 32

4 18 38

7

parent

trav
insert 35:

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 482

Deleting Items from a Binary Search Tree

• Three cases for deleting a node x

• Case 1: x has no children.
Remove x from the tree by setting its parent’s reference to null.

ex: delete 4

• Case 2: x has one child.
Take the parent’s reference to x and make it refer to x’s child.

ex: delete 12

26

12 32

4 18 38

26

12 32

18 38

26

12 32

18 38

26

18 32

38

Deleting Items from a Binary Search Tree (cont.)

• Case 3: x has two children

• we can't give both children to the parent. why?

• instead, we leave x's node where it is, and we replace its
key and data with those from another node

• the replacement must maintain the search-tree inequalities

ex:
delete 12

two options: which ones?26

12 32

4 18 38

7 20152

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 483

Deleting Items from a Binary Search Tree (cont.)

• Case 3: x has two children (continued):

• replace x's key and data with those from the smallest node
in x’s right subtree—call it y

• we then delete y
• it will either be a leaf node or will have one right child. why?

• thus, we can delete it using case 1 or 2

ex: delete 12

x

y

copy node y's
contents into
node x

delete
node y

12

4 18

2015

…

… …

x

y

15

18

2015

…

x15

18

20

…

4

… …

4

… …

Which Node Would Be Used To Replace 9?

9

4

3 8

5

17

10

1

7

25

15 36

A. 4

B. 8

C. 10

D. 15

E. 17

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 484

Implementing Deletion
public LLList delete(int key) {

// Find the node and its parent.
Node parent = null;
Node trav = root;
while (trav != null && trav.key != key) {

parent = trav;
if (key < trav.key) {

trav = trav.left;
} else {

trav = trav.right;
}

}

// Delete the node (if any) and return the removed items.
if (trav == null) { // no such key

return null;
} else {

LLList removedData = trav.data;
deleteNode(trav, parent); // call helper method
return removedData;

}
}

26

18 45

35

30

50

15

delete 26:

trav
parent

Implementing Case 3
private void deleteNode(Node toDelete, Node parent) {

if (toDelete.left != null && toDelete.right != null) {
// Find a replacement – and
// the replacement's parent.
Node replaceParent = toDelete;

// Get the smallest item
// in the right subtree.
Node replace = toDelete.right;
// what should go here?

// Replace toDelete's key and data
// with those of the replacement item.
toDelete.key = replace.key;
toDelete.data = replace.data;

// Recursively delete the replacement
// item's old node. It has at most one
// child, so we don't have to
// worry about infinite recursion.
deleteNode(replace, replaceParent);

} else {
...

}

26

18 45

35

toDelete

30

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 485

Implementing Cases 1 and 2
private void deleteNode(Node toDelete, Node parent) {

if (toDelete.left != null && toDelete.right != null) {
...

} else {
Node toDeleteChild;
if (toDelete.left != null)

toDeleteChild = toDelete.left;
else

toDeleteChild = toDelete.right;
// Note: in case 1, toDeleteChild
// will have a value of null.

if (toDelete == root)
root = toDeleteChild;

else if (toDelete.key < parent.key)
parent.left = toDeleteChild;

else
parent.right = toDeleteChild;

}
}

30

18 45

35

toDelete

parent

30

toDeleteChild

Recall: Path, Depth, Level, and Height

• There is exactly one path (one sequence of edges) connecting
each node to the root.

• depth of a node = # of edges on the path from it to the root

• Nodes with the same depth form a level of the tree.

• The height of a tree is the maximum depth of its nodes.
• example: the tree above has a height of 2

depth = 2

level 1

level 0

level 2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 486

Efficiency of a Binary Search Tree

• For a tree containing n items, what is the efficiency
of any of the traversal algorithms?

• you process all n of the nodes

• you perform O(1) operations on each of them

• Search, insert, and delete all have the same time complexity.

• insert is a search followed by O(1) operations

• delete involves either:

• a search followed by O(1) operations (cases 1 and 2)

• a search partway down the tree for the item,
followed by a search further down for its replacement,
followed by O(1) operations (case 3)

Efficiency of a Binary Search Tree (cont.)

• Time complexity of searching:

• best case:

• worst case:

• you have to go all the way down to level h
before finding the key or realizing it isn't there

• along the path to level h, you process h + 1 nodes

• average case:

• What is the height of a tree containing n items?

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 487

Balanced Trees

• A tree is balanced if, for each of its nodes, the node’s subtrees
have the same height or have heights that differ by 1.
• example:

• 26: both subtrees have a height of 1

• 12: left subtree has height 0
right subtree is empty (height = -1)

• 32: both subtrees have a height of 0

• all leaf nodes: both subtrees are empty

• For a balanced tree with n nodes, height = O(log n)

• each time that you follow an edge down the longest path,
you cut the problem size roughly in half!

• Therefore, for a balanced binary search tree, the worst case
for search / insert / delete is O(h) = O(log n)

• the "best" worst-case time complexity

26

12 32

4 3830

• Extreme case: the tree is equivalent to a linked list

• height = n - 1

• Therefore, for a unbalanced
binary search tree, the worst case
for search / insert / delete is O(h) = O(n)

• the "worst" worst-case time complexity

• We’ll look next at search-tree variants
that take special measures to ensure balance.

4

12

What If the Tree Isn't Balanced?

26

32

36

38

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 488

2-3 Trees

• A 2-3 tree is a balanced tree in which:
• all nodes have equal-height subtrees (perfect balance)
• each node is either

• a 2-node, which contains one data item and 0 or 2 children

• a 3-node, which contains two data items and 0 or 3 children

• the keys form a search tree

• Example:

2-node: 3-node:

28 61

10 40

3 14 20 34 51

77 90

68 80 87 93 97

<k k

k

<k1
k1
<k2

k1 k2

k2

Search in 2-3 Trees

• Algorithm for searching for an item with a key k:

if k == one of the root node’s keys, you’re done
else if k < the root node’s first key

search the left subtree
else if the root is a 3-node and k < its second key

search the middle subtree
else

search the right subtree

• Example: search for 87

28 61

10 40

3 34 51

77 90

68 80 87 93 9714 20

<k1
k1
<k2

k1 k2

k2

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 489

50

Insertion in 2-3 Trees

• Algorithm for inserting an item with a key k:

search for k, but don’t stop until you hit a leaf node
let L be the leaf node at the end of the search
if L is a 2-node

add k to L, making it a 3-node

else if L is a 3-node
split L into two 2-nodes containing the items with the

smallest and largest of: k, L’s 1st key, L’s 2nd key
the middle item is “sent up” and inserted in L’s parent

example: add 52

50

54 70
… …

50 54

52 70
…

52 54 70

10

3 20

10

3 14 20

Example 1: Insert 8

• Search for 8:

• Add 8 to the leaf node, making it a 3-node:

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

10 40

34 51

77 90

68 93 9714 20 80 873 8

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 490

17
14 20

Example 2: Insert 17

• Search for 17:

• Split the leaf node, and send up the middle of 14, 17, 20
and insert it the leaf node’s parent:

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

10 40

3 34 51

…

28 61

40

3 34 51

…
10 17

14 20

Example 3: Insert 92

• In which node will we initially try to insert it?

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 491

Example 3: Insert 92

• Search for 92:

• Split the leaf node, and send up the middle of 92, 93, 97
and insert it the leaf node’s parent:

• In this case, the leaf node’s parent is also a 3-node, so we
need to split is as well…

28 61

10 40

3 34 51

77 90

68 93 9714 20 80 87

28 61

40

34 51

77 90

68 9780 87

…

9392 92 97

28 61

40

34 51

77 90

68 80 87

…
93

• We split the [77 90] node and we send up the middle of 77, 90, 93:

• We try to insert it in the root node, but the root is also full!

• Then we split the root,
which increases the
tree’s height by 1, but
the tree is still balanced.

• This is only case in which
the tree’s height increases.

Example 3 (cont.)

92 97

28 61

40

34 51 68 80 87

…
9377 90

92 97

28 61

40

34 51 68 80 87

…
77 93

90

92 97

40

34 51 68 80 87

…
77 93

9028

61

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 492

Efficiency of 2-3 Trees

• A 2-3 tree containing n items has a height h <= log2n.

• Thus, search and insertion are both O(log n).

• search visits at most h + 1 nodes

• insertion visits at most 2h + 1 nodes:

• starts by going down the full height

• in the worst case, performs splits all the way back up to the root

• Deletion is tricky – you may need to coalesce nodes!
However, it also has a time complexity of O(log n).

• Thus, we can use 2-3 trees for a O(log n)-time data dictionary!

External Storage

• The balanced trees that we've covered don't work well if you
want to store the data dictionary externally – i.e., on disk.

• Key facts about disks:

• data is transferred to and from disk in units called blocks,
which are typically 4 or 8 KB in size

• disk accesses are slow!

• reading a block takes ~10 milliseconds (10-3 sec)

• vs. reading from memory, which takes ~10 nanoseconds
• in 10 ms, a modern CPU can perform millions of operations!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 493

B-Trees

• A B-tree of order m is a tree in which each node has:
• at most 2m entries (and, for internal nodes, 2m + 1 children)
• at least m entries (and, for internal nodes, m + 1 children)
• exception: the root node may have as few as 1 entry
• a 2-3 tree is essentially a B-tree of order 1

• To minimize the number of disk accesses, we make m
as large as possible.

• each disk read brings in more items

• the tree will be shorter (each level has more nodes),
and thus searching for an item requires fewer disk reads

• A large value of m doesn’t make sense for a memory-only tree,
because it leads to many key comparisons per node.

• These comparisons are less expensive than accessing the disk,
so large values of m make sense for on-disk trees.

Example: a B-Tree of Order 2

• m = 2: at most 2m = 4 items per node (and at most 5 children)
at least m = 2 items per node (and at least 3 children)
(except the root, which could have 1 item)

• The above tree holds the same keys this 2-3 tree:

• We used the same order of insertion to create both trees:
51, 3, 40, 77, 20, 10, 34, 28, 61, 80, 68, 93, 90, 97, 87, 14

20 40 68 90

3 10 14 28 34 93 9751 61 77 80 87

28 61

10 40

3 14 20 34 51

77 90

68 80 87 93 97

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 494

Search in B-Trees

• Similar to search in a 2-3 tree.

• Example: search for 87

20 40 68 90

3 10 14 28 34 93 9751 61 77 80 87

Insertion in B-Trees

• Similar to insertion in a 2-3 tree:

search for the key until you reach a leaf node

if a leaf node has fewer than 2m items, add the item
to the leaf node

else split the node, dividing up the 2m + 1 items:

the smallest m items remain in the original node

the largest m items go in a new node

send the middle entry up and insert it (and a pointer to
the new node) in the parent

• Example of an insertion without a split: insert 13

20 40 68 90

3 10 14 28 34 51 61

… …
20 40 68 90

3 10 13 14 28 34 51 61

… …

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 495

Splits in B-Trees

• Insert 5 into the result of the previous insertion:

• The middle item (the 10) is sent up to the root.
The root has no room, so it is also split, and a new root is formed:

• Splitting the root increases the tree’s height by 1, but the tree
is still balanced. This is only way that the tree’s height increases.

• When an internal node is split, its 2m + 2 pointers are split evenly
between the original node and the new node.

20 40 68 90

28 34 51 61

… …
20 40 68 90

3 5 13 14 28 34 51 61

… …
3 10 13 145

10
m = 2

40

20 40 68 90

3 5 13 14 28 34 51 61

… …
10 20 68 90

28 34 51 61

… …
10

3 5 13 14

Analysis of B-Trees

• All internal nodes have at least m children (actually, at least m+1).

• Thus, a B-tree with n items has a height <= logmn, and
search and insertion are both O(logmn).

• As with 2-3 trees, deletion is tricky, but it’s still logarithmic.

20 40 68 90

3 10 14 28 34 93 9751 61 77 80 87

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 496

Search Trees: Conclusions

• Binary search trees can be O(logn), but they can degenerate
to O(n) running time if they are out of balance.

• 2-3 trees and B-trees are balanced search trees that
guarantee O(logn) performance.

• When data is stored on disk, the most important performance
consideration is reducing the number of disk accesses.

• B-trees offer improved performance for on-disk data dictionaries.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 497

Heaps and Priority Queues

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 9, Part 3

Priority Queue

• A priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

• ("Ann Cudd", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

• use a higher priority for items that are "more important"

• Example application: scheduling a shared resource like the CPU

• give some processes/applications a higher priority,
so that they will be scheduled first and/or more often

• Key operations:

• insert: add an item (with a position based on its priority)
• remove: remove the item with the highest priority

• One way to implement a PQ efficiently is using a type of
binary tree known as a heap.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 498

Complete Binary Trees

• A binary tree of height h is complete if:
• levels 0 through h - 1 are fully occupied
• there are no “gaps” to the left of a node in level h

• Complete:

• Not complete (= missing node):

Representing a Complete Binary Tree

• A complete binary tree has a simple array representation.

• The tree's nodes are stored in the array
in the order given by a level-order traversal.

• top to bottom, left to right

• Examples:

a[0]

a[1] a[2]

a[3] a[4] …

26 12 32 4 18 28

10 8 17 14 326

12

4 18

32

28

10

8

14 3

17

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 499

• The root node is in a[0]

• Given the node in a[i]:

• its left child is in a[2*i + 1]

• its right child is in a[2*i + 2]

• its parent is in a[(i - 1)/2]

(using integer division)

• Examples:

• the left child of the node in a[1] is in a[2*1 + 1] = a[3]

• the left child of the node in a[2] is in a[2*2 + 1] = a[5]

• the right child of the node in a[3] is in a[2*3 + 2] = a[8]

• the right child of the node in a[2] is in _________________

• the parent of the node in a[4] is in a[(4-1)/2] = a[1]

• the parent of the node in a[7] is in ___________________

Navigating a Complete Binary Tree in Array Form

a[0]

a[1]

a[4] …a[3]

a[7] a[8]

a[2]

a[5] a[6]

• Assume that the following array represents a complete tree:

What is the left child of 24?

26 12 32 24 18 28 47 10 9

0 1 2 3 4 5 6 7 8

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 500

Heaps

• Heap: a complete binary tree in which each interior node
is greater than or equal to its children

• examples:

• The largest value is always at the root of the tree.

• The smallest value can be in any leaf node - there’s no
guarantee about which one it will be.

• We're using max-at-top heaps.

• in a min-at-top heap, every interior node <= its children

28

16

12 8

20

5

18

8

3 7

2

12

7 10

Which of these is a heap?

• A. B. C.

D. more than one (which ones?)

E. none of them

28

16

12 18

20

5

18

8

3 7

2

12

7 10

2 5

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 501

Removing the Largest Item from a Heap

• Remove and return the item in the root node.

• In addition, need to move the largest remaining item to the root,
while maintaining a complete tree with each node >= children

• Algorithm:
1. make a copy of the largest item
2. move the last item in the heap

to the root
3. “sift down” the new root item

until it is >= its children (or it’s a leaf)
4. return the largest item

sift down
the 5:

28

20

16 8

12

5

5

20

16 8

12

20

5

16 8

12

20

16

5 8

12

Sifting Down an Item

• To sift down item x (i.e., the item whose key is x):
1. compare x with the larger of the item’s children, y
2. if x < y, swap x and y and repeat

• Other examples:
sift down
the 10:

sift down
the 7:

10

7

3 5

18

8 6

18

7

3 5

10

8 6

7

26

15 18

23

10

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 502

Inserting an Item in a Heap

• Algorithm:
1. put the item in the next available slot (grow array if needed)
2. “sift up” the new item

until it is <= its parent (or it becomes the root item)

• Example: insert 35
put it in
place:

sift it up: 20

16

5 8

20

16

5 8

35

16

5 8

20

16

5 8

12

20

16

5 8

12

35

12

35

35

12

20

12

Time Complexity of a Heap

• A heap containing n items has a height <= log2n. Why?

• Thus, removal and insertion are both O(log n).

• remove: go down at most log2n levels when sifting down;
do a constant number of operations per level

• insert: go up at most log2n levels when sifting up;
do a constant number of operations per level

• This means we can use a heap for a O(log n)-time priority queue.

5

16

14 20

8

1 26

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 503

Using a Heap for a Priority Queue

• Recall: a priority queue (PQ) is a collection in which each item
has an associated number known as a priority.

• ("Ann Cudd", 10), ("Robert Brown", 15),
("Dave Sullivan", 5)

• use a higher priority for items that are "more important"

• To implement a PQ using a heap:

• order the items in the heap according to their priorities

• every item in the heap will have a priority >= its children

• the highest priority item will be in the root node

• get the highest priority item by calling heap.remove()!

Using a Heap to Sort an Array

• Recall selection sort: it repeatedly finds the smallest remaining
element and swaps it into place:

…

• It isn’t efficient, because it performs a linear scan to
find the smallest remaining element (O(n) steps per scan).

• Heapsort is a sorting algorithm that repeatedly finds the largest
remaining element and puts it in place.

• It is efficient, because it turns the array into a heap.

• it can find/remove the largest remaining in O(logn) steps!

0 1 2 3 4 5 6

5 16 8 14 20 1 26

0 1 2 3 4 5 6

1 5 8 14 20 16 26

0 1 2 3 4 5 6

1 16 8 14 20 5 26

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 504

Converting an Arbitrary Array to a Heap

• To convert an array (call it contents) with n items to a heap:
1. start with the parent of the last element:

contents[i], where i = ((n – 1) – 1)/2 = (n – 2)/2
2. sift down contents[i] and all elements to its left

• Example:

• Last element’s parent = contents[(7 – 2)/2] = contents[2].
Sift it down:

0 1 2 3 4 5 6

5 16 8 14 20 1 26
5

16

14 20

8

1 26

5

16

14 20

8

1 26

5

16

14 20

26

1 8

Converting an Array to a Heap (cont.)

• Next, sift down contents[1]:

• Finally, sift down contents[0]:

5

20

14 16

26

1 8

26

20

14 16

5

1 8

5

16

14 20

26

1 8

5

20

14 16

26

1 8

26

20

14 16

8

1 5

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 505

Heapsort

• Pseudocode:
heapSort(arr) {

// Turn the array into a max-at-top heap.
heap = new Heap(arr);

endUnsorted = arr.length - 1;
while (endUnsorted > 0) {

// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

}

Heapsort Example

• Sort the following array:

• Here’s the corresponding complete tree:

• Begin by converting it to a heap:

0 1 2 3 4 5 6

13 6 45 10 3 22 5

13

6

10 3

45

22 5

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 506

Heapsort Example (cont.)

• Here’s the heap in both tree and array forms:

• We begin looping:

while (endUnsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

0 1 2 3 4 5 6

45 10 22 6 3 13 5

45

10

6 3

22

13 5

endUnsorted: 6

Heapsort Example (cont.)

• Here’s the heap in both tree and array forms:

• Remove the largest item and put it in place:

45

10

6 3 13

22

10

6 3

13

5

22

10

6 3

13

5

0 1 2 3 4 5 6

45 10 22 6 3 13 5

45

10

6 3

22

13 5

endUnsorted: 6

toRemove: 45
0 1 2 3 4 5 6

22 10 13 6 3 5 5

endUnsorted: 6
largestRemaining: 45

0 1 2 3 4 5 6

22 10 13 6 3 5 45

endUnsorted: 5

22

5

5
remove()

copies 45;
moves 5
to root

remove()
sifts down 5;
returns 45

heapSort() puts 45 in place;
decrements endUnsorted

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 507

Heapsort Example (cont.)

22

10

6 3

13

5

13

10

6 3

5

13

10

6 3

5

toRemove: 22
0 1 2 3 4 5 6

13 10 5 6 3 5 45

endUnsorted: 5
largestRemaining: 22

5

13

10

6 3

5

10

6

3

5

10

6

3

5

toRemove: 13
0 1 2 3 4 5 6

10 6 5 3 3 22 45

endUnsorted: 4
largestRemaining: 13

0 1 2 3 4 5 6

10 6 5 3 13 22 45

endUnsorted: 3

3

copy 22;
move 5
to root

sift down 5;
return 22

copy 13;
move 3
to root

sift down 3;
return 13

put 13 in place;
decrement

0 1 2 3 4 5 6

13 10 5 6 3 22 45

endUnsorted: 4

put 22 in place;
decrement endUnsorted

Heapsort Example (cont.)

10

6

3

5

6

3 5

6

3 5

toRemove: 10
0 1 2 3 4 5 6

6 3 5 3 13 22 45

endUnsorted: 3
largestRemaining: 10

6

3 5

5

3

5

3

toRemove: 6
0 1 2 3 4 5 6

5 3 5 10 13 22 45

endUnsorted: 2
largestRemaining: 6

0 1 2 3 4 5 6

5 3 6 10 13 22 45

endUnsorted: 1

3

copy 6;
move 5
to root

sift down 5;
return 6

put 6 in place;
decrement

copy 10;
move 3
to root

sift down 3;
return 10

5

0 1 2 3 4 5 6

6 3 5 10 13 22 45

endUnsorted: 2

put 10 in place;
decrement

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 508

Heapsort Example (cont.)

5

3

3 3

toRemove: 5
0 1 2 3 4 5 6

3 3 6 10 13 22 45

endUnsorted: 1
largestRemaining: 5

0 1 2 3 4 5 6

3 5 6 10 13 22 45

endUnsorted: 0

3copy 5;
move 3
to root

sift down 3;
return 5

put 5 in place;
decrement

• And now we terminate the loop:

while (endUnsorted > 0) {
// Get the largest remaining element and put it
// at the end of the unsorted portion of the array.
largestRemaining = heap.remove();
arr[endUnsorted] = largestRemaining;

endUnsorted--;
}

Efficiency of Heapsort

• Time complexity of going from a heap to a sorted array?

• It can be shown that turning an array into a heap takes O(n) steps.

• even better than O(n log n)!

• n/2 calls to siftDown(), most of which involve small subheaps

• Thus, total time complexity = ?

5

16

14 20

8

1 26

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 509

How Does Heapsort Compare?

• Heapsort matches mergesort for the best worst-case time
complexity, but it has better space complexity.

• Insertion sort is still best for arrays that are almost sorted.

• Quicksort is still typically fastest in the average case.

algorithm best case avg case worst case extra
memory

selection sort O(n2) O(n2) O(n2) O(1)

insertion sort O(n) O(n2) O(n2) O(1)

Shell sort O(n log n) O(n1.5) O(n1.5) O(1)

bubble sort O(n2) O(n2) O(n2) O(1)

quicksort O(n log n) O(n log n) O(n2) O(log n)
worst: O(n)

mergesort O(n log n) O(n log n) O(nlog n) O(n)

heapsort O(n log n) O(n log n) O(nlog n) O(1)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 510

Hash Tables

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 9, Part 4

Data Dictionary Revisited

• We've considered several data structures that allow us to store
and search for data items using their key fields:

• We'll now look at hash tables, which can do better than O(log n).

data structure searching for an item inserting an item

a list implemented using
an array

O(log n)
using binary search

O(n)

a list implemented using
a linked list

O(n)
using linear search

O(n)

binary search tree

balanced search trees
(2-3 tree, B-tree, others)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 511

Ideal Case: Searching = Indexing

• We would achieve optimal efficiency if we could treat
the key as an index into an array.

• Example: storing data about members of a sports team

• key = jersey number (some value from 0-99).

• class for an individual player's record:
public class Player {

private int jerseyNum;
private String firstName;
…

}

• store the player records in an array:
Player[] teamRecords = new Player[100];

• In such cases, search and insertion are O(1):
public Player search(int jerseyNum) {

return teamRecords[jerseyNum];
}

Hashing: Turning Keys into Array Indices

• In most real-world problems, indexing is not as simple as
the sports-team example. Why?

•

•

•

• To handle these problems, we perform hashing:

• use a hash function to convert the keys into array indices
"Sullivan"  18

• use techniques to handle cases in which multiple keys
are assigned the same hash value

• The resulting data structure is known as a hash table.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 512

Hash Functions

• A hash function defines a mapping from keys to integers.

• We then use the modulus operator to get a valid array index.

key value integer integer in [0, n – 1]
(n = array length)

• Here's a very simple hash function for keys of lower-case letters:
h(key) = ASCII value of first char – ASCII value of 'a'

• examples:
h("ant") = ASCII for 'a' – ASCII for 'a' = 0
h("cat") = ASCII for 'c' – ASCII for 'a' = 2

• h(key) is known as the key's hash code.

• A collision occurs when items with different keys are assigned
the same hash code.

hash
function

%

Dealing with Collisions I: Separate Chaining

• Each position in the hash table serves as a bucket that can
store multiple data items.

• Two options:

1. each bucket is itself an array
• need to preallocate, and a bucket may become full

2. each bucket is a linked list
• items with the same hash code are "chained" together
• each "chain" can grow as needed

0

1 null

2

3 null

… ...

"ant" "ape"

null

"cat"

null

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 513

Dealing with Collisions II: Open Addressing

• When the position assigned by the hash function is occupied,
find another open position.

• Example: "wasp" has a hash code of 22,
but it ends up in position 23 because
position 22 is occupied.

• We'll consider three ways of finding an
open position – a process known as probing.

• We also perform probing when searching.

• example: search for "wasp"

• look in position 22

• then look in position 23

• need to figure out when to safely stop
searching (more on this soon!)

0 "ant"

1

2 "cat"

3

4 "emu"

5

6

7

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"

Linear Probing

• Probe sequence: h(key), h(key) + 1, h(key) + 2, …,
wrapping around as necessary.

• Examples:
• "ape" (h = 0) would be placed in position 1,

because position 0 is already full.
• "bear" (h = 1): try 1, 1 + 1, 1 + 2 – open!
• where would "zebu" end up?

• Advantage: if there is an open cell,
linear probing will eventually find it.

• Disadvantage: get "clusters" of occupied cells
that lead to longer subsequent probes.

• probe length = the number of positions
considered during a probe

0 "ant"

1 "ape"

2 "cat"

3 "bear"

4 "emu"

5

6

7

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 514

• Probe sequence: h(key), h(key) + 12, h(key) + 22, h(key) + 32, …,
wrapping around as necessary.

• Examples:
• "ape" (h = 0): try 0, 0 + 1 – open!
• "bear" (h = 1): try 1, 1 + 1, 1 + 4 – open!
• "zebu"?

• Advantage: smaller clusters of occupied cells

• Disadvantage: may fail to find an existing
open position. For example:
table size = 10
x = occupied

trying to insert a
key with h(key) = 0

offsets of the probe
sequence in italics

Quadratic Probing

0 x

1 x 1 81

2

3

4 x 4 64

5 x 25

6 x 16 36

7

8

9 x 9 49

0 "ant"

1 "ape"

2 "cat"

3

4 "emu"

5 "bear"

6

7

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"

Double Hashing

• Use two hash functions:

• h1 computes the hash code

• h2 computes the increment for probing

• probe sequence: h1, h1 + h2, h1 + 2*h2, …

• Examples:
• h1 = our previous h
• h2 = number of characters in the string
• "ape" (h1 = 0, h2 = 3): try 0, 0 + 3 – open!
• "bear" (h1 = 1, h2 = 4): try 1 – open!
• "zebu"?

• Combines good features of linear and quadratic:

• reduces clustering

• will find an open position if there is one,
provided the table size is a prime number

0 "ant"

1 "bear"

2 "cat"

3 "ape"

4 "emu"

5

6

7

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 515

Removing Items Under Open Addressing

• Problematic example (using linear probing):
• insert "ape" (h = 0): try 0, 0 + 1 – open!
• insert "bear" (h = 1): try 1, 1 + 1, 1 + 2 – open!
• remove "ape"
• search for "ape": try 0, 0 + 1 – conclude not in table
• search for "bear": try 1 – conclude not in table,

but "bear" is further down in the table!

• To fix this problem, distinguish between:

• removed positions that previously held an item

• empty positions that have never held an item

• During probing, we don't stop if we see a removed position.
ex: search for "bear": try 1 (removed), 1 + 1, 1 + 2 – found!

• We can insert items in either empty or removed positions.

0 "ant"

1

2 "cat"

3 "bear"

4 "emu"

5

… ...

22 "wolf"

23 "wasp"

24 "yak"

25 "zebra"

An Interface For Hash Tables
public interface HashTable {

boolean insert(Object key, Object value);
Queue<Object> search(Object key);
Queue<Object> remove(Object key);

}

• insert() takes a key-value pair and returns:

• true if the key-value pair can be added

• false if it cannot be added (referred to as overflow)

• search() and remove() both take a key, and return a queue
containing all of the values associated with that key.

• example: an index for a book
• key = word
• values = the pages on which that word appears

• return null if the key is not found

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 516

An Implementation Using Open Addressing
public class OpenHashTable implements HashTable {

private class Entry {
private Object key;
private LLQueue<Object> values;
…

}
…
private Entry[] table;
private int probeType;

}

• We use a private inner class for the entries in the hash table.

• We use an LLQueue for the values associated with a given key.

0

1

2 null

3 null

4 null

… …

LLQueue
object

"ant"

"ape"
table

probeType LINEAR
LLQueue
object

Empty vs. Removed

• When we remove a key and its values, we:

• leave the Entry object in the table

• set the Entry object's key and values fields to null

• example: after remove("ape"):

• Note the difference:

• a truly empty position has a value of null in the table
(example: positions 2, 3 and 4 above)

• a removed position refers to an Entry object whose
key and values fields are null (example: position 1 above)

0

1

2 null

3 null

4 null

… …

LLQueue
object

"ant"

"ape"null

null

table

probeType LINEAR
LLQueue
object

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 517

Probing Using Double Hashing
private int probe(Object key) {

int i = h1(key); // first hash function
int h2 = h2(key); // second hash function

// keep probing until we get an empty position or match
while (table[i] != null && !key.equals(table[i].key)) {

i = (i + h2) % table.length;
}

return i;
}

• It is essential that we:

• check for table[i] != null first. why?

• call the equals method on key, not table[i].key. why?

Avoiding an Infinite Loop

• The while loop in our probe method could lead to an infinite loop.

while (table[i] != null && !key.equals(table[i].key)) {
i = (i + h2) % table.length;

}

• When would this happen?

• We can stop probing after checking n positions (n = table size),
because the probe sequence will just repeat after that point.

• for quadratic probing:
(h1 + n2) % n = h1 % n
(h1 + (n+1)2) % n = (h1 + n2 + 2n + 1) % n = (h1 + 1)%n

• for double hashing:
(h1 + n*h2) % n = h1 % n
(h1 + (n+1)*h2) % n = (h1 + n*h2 + h2) % n = (h1 + h2)%n

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 518

Avoiding an Infinite Loop (cont.)

private int probe(Object key) {
int i = h1(key); // first hash function
int h2 = h2(key); // second hash function
int numChecked = 1;

// keep probing until we get an empty position or a match
while (table[i] != null && !key.equals(table[i].key)) {

if (numChecked == table.length) {
return -1;

}
i = (i + h2) % table.length;
numChecked++;

}

return i;
}

Search and Removal
public LLQueue<Object> search(Object key) {

// throw an exception if key == null
int i = probe(key);
if (i == -1 || table[i] == null) {

return null;
} else {

return table[i].values;
}

}

public LLQueue<Object> remove(Object key) {
// throw an exception if key == null
int i = probe(key);
if (i == -1 || table[i] == null) {

return null;
}

LLQueue<Object> removedVals = table[i].values;
table[i].key = null;
table[i].values = null;
return removedVals;

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 519

Insertion

• We begin by probing for the key.

• Several cases:

1. the key is already in the table (we're inserting a duplicate)

 add the value to the values in the key's Entry

2. the key is not in the table: three subcases:

a. encountered 1 or more removed positions while probing
 put the (key, value) pair in the first removed position

seen during probing. why?

b. no removed position; reached an empty position
 put the (key, value) pair in the empty position

c. no removed position or empty position
 overflow; return false

Tracing Through Some Examples

• Start with the hash table at right with:

• double hashing

• our earlier hash functions h1 and h2

• Perform the following operations:

• insert "bear" (h1 = 1, h2 = 4):

• insert "bison" (h1 = 1, h2 = 5):

• insert "cow" (h1 = 2, h2 = 3):

• delete "emu" (h1 = 4, h2 = 3):

• search "eel" (h1 = 4, h2 = 3):

• insert "bee" (h1 = ___, h2 = ____):

0 "ant"

1

2 "cat"

3

4 "emu"

5 "fox"

6

7

8

9

10

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 520

Dealing with Overflow

• Overflow = can't find a position for an item

• When does it occur?

• linear probing:

• quadratic probing:

•

•

• double hashing:
• if the table size is a prime number: same as linear
• if the table size is not a prime number: same as quadratic

• To avoid overflow (and reduce search times), grow the hash table
when the % of occupied positions gets too big.

• problem: we need to rehash all of the existing items. why?

Implementing the Hash Function

• Characteristics of a good hash function:
1) efficient to compute

2) uses the entire key

• changing any char/digit/etc. should change the hash code

3) distributes the keys more or less uniformly across the table

4) must be a function!

• a key must always get the same hash code

• In Java, every object has a hashCode() method.

• the version inherited from Object returns a value
based on an object's memory location

• classes can override this version with their own

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 521

Hash Functions for Strings: version 1

• ha = the sum of the characters' ASCII values

• example: ha("eat") = 101 + 97 + 116 = 314

• All permutations of a given set of characters get the same code.

• example: ha("tea") = ha("eat")

• could be useful in a Scrabble game

• allow you to look up all words that can be formed
from a given set of characters

• The range of possible hash codes is very limited.

• example: hashing keys composed of 1-5 lower-case char's
(padded with spaces)

• 26*27*27*27*27 = over 13 million possible keys

• smallest code = ha("a ") = 97 + 4*32 = 225
largest code = ha("zzzzz") = 5*122 = 610

610 – 225
= 385 codes

Hash Functions for Strings: version 2

• Compute a weighted sum of the ASCII values:

hb = a0bn–1 + a1bn–2 + … + an–2b + an–1

where ai = ASCII value of the ith character
b = a constant
n = the number of characters

• Multiplying by powers of b allows the positions of the characters
to affect the hash code.

• different permutations get different codes

• We may get arithmetic overflow, and thus the code
may be negative. We adjust it when this happens.

• Java uses this hash function with b = 31 in the hashCode()
method of the String class.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 522

Hash Table Efficiency

• In the best case, search and insertion are O(1).

• In the worst case, search and insertion are linear.

• open addressing: O(m), where m = the size of the hash table
• separate chaining: O(n), where n = the number of keys

• With good choices of hash function and table size,
complexity is generally better than O(log n) and approaches O(1).

• load factor = # keys in table / size of the table.
To prevent performance degradation:

• open addressing: try to keep the load factor < 1/2
• separate chaining: try to keep the load factor < 1

• Time-space tradeoff: bigger tables have better performance,
but they use up more memory.

Hash Table Limitations

• It can be hard to come up with a good hash function for a
particular data set.

• The items are not ordered by key. As a result, we can't easily:

• print the contents in sorted order
• perform a range search (find all values between v1 and v2)
• perform a rank search – get the kth largest item

We can do all of these things with a search tree.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 523

Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(the sequence of positions seen during probing)

0 "ant"

1

2 "cat"

3

4 "emu"

5

6

7

8

9

10
A. 1, 2, 5

B. 1, 6

C. 1, 7, 2

D. 1, 7, 3

E. 1, 7, 2, 8

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 524

Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6) try: 1 % 11 = 1

(1 + 6) % 11 = 7
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8
empty cell, so stop probing

0 "ant"

1

2 "cat"

3

4 "emu"

5

6

7

8

9

10
A. 1, 2, 5

B. 1, 6

C. 1, 7, 2

D. 1, 7, 3

E. 1, 7, 2, 8

Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6) try: 1 % 11 = 1

(1 + 6) % 11 = 7
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8

• If we insert "baboon", in what position will it go?

0 "ant"

1

2 "cat"

3

4 "emu"

5

6

7

8

9

10

A. 1 B. 7 C. 2 D. 8

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 525

Extra Practice

• Start with the hash table at right with:

• double hashing

• h1(key) = ASCII of first letter – ASCII of 'a'

• h2(key) = key.length()

• shaded cells are removed cells

• What is the probe sequence for "baboon"?
(h1 = 1, h2 = 6) try: 1 % 11 = 1

(1 + 6) % 11 = 7
(1 + 2*6) % 11 = 2
(1 + 3*6) % 11 = 8

• If we insert "baboon", in what position will it go?

0 "ant"

1 "baboon"

2 "cat"

3

4 "emu"

5

6

7

8

9

10

A. 1 B. 7 C. 2 D. 8

the first removed position seen while probing

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 526

Graphs

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Unit 10

• A graph consists of:
• a set of vertices (also known as nodes)
• a set of edges (also known as arcs), each of which connects

a pair of vertices

What is a Graph?

vertex / node

edge / arc

e

b d f h j

a c i

g

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 527

• Vertices represent cities.

• Edges represent highways.

• This is a weighted graph, with a cost associated with each edge.

• in this example, the costs denote mileage

• We’ll use graph algorithms to answer questions like
“What is the shortest route from Portland to Providence?”

Example: A Highway Graph

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84

74

• Two vertices are adjacent if they are connected by a single edge.
• ex: c and g are adjacent, but c and i are not

• The collection of vertices that are adjacent to a vertex v are
referred to as v’s neighbors.
• ex: c’s neighbors are a, b, d, f, and g

Relationships Among Vertices
e

b d f h j

a c i

g

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 528

• A path is a sequence of edges that connects two vertices.

• A graph is connected if there is
a path between any two vertices.
• ex: the six vertices at right are part

of a graph that is not connected

• A graph is complete if there is an
edge between every pair of vertices.
• ex: the graph at right is complete

Paths in a Graph
e

b d f h j

a c i

g

• A directed graph has a direction associated with each edge,
which is depicted using an arrow:

• Edges in a directed graph are often represented as ordered
pairs of the form (start vertex, end vertex).
• ex: (a, b) is an edge in the graph above, but (b, a) is not.

• In a path in a directed graph, the end vertex of edge i
must be the same as the start vertex of edge i + 1.
• ex: { (a, b), (b, e), (e, f) } is a valid path.

{ (a, b), (c, b), (c, a) } is not.

Directed Graphs

e

b d f

a c

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 529

• A cycle is a path that:

• leaves a given vertex using one edge

• returns to that same vertex using a different edge

• Examples: the highlighted paths below

• An acyclic graph has no cycles.

Cycles in a Graph

e

b d f h

a c i

• A tree is a special type of graph.

• connected, undirected, and acyclic

• we usually single out one of the vertices to be the root,
but graph theory does not require this

a graph that is not a tree, a tree using the same nodes
because it has cycles

another tree using the same nodes

Trees vs. Graphs

e

b d f h

a c i

e

b d f h

a c i

e

b d f h

a c i

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 530

• A spanning tree is a subset of a connected graph that contains:

• all of the vertices

• a subset of the edges that form a tree

• Recall this graph with cycles
from the previous slide:

• The trees on that slide were spanning trees for this graph.
Here are two others:

Spanning Trees

e

b d f h

a c i

e

b d f h

a c i

e

b d f h

a c i

Representing a Graph: Option 1

• Use an adjacency matrix – a two-dimensional array in which
element [r][c] = the cost of going from vertex r to vertex c

• Example:

• Use a special value to indicate there’s no edge from r to c

• shown as a shaded cell above

• can’t use 0, because an edge may have an actual cost of 0

• This representation:

• wastes memory if a graph is sparse (few edges per vertex)

• is memory-efficient if a graph is dense (many edges per vertex)

3210

44540

391

8339542

83443

1. Portland

2. Portsmouth

0. Boston3. Worcester

54

44

83

39

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 531

Representing a Graph: Option 2

• Use one adjacency list for each vertex.

• a linked list with info on the edges coming from that vertex

• This representation uses less memory if a graph is sparse.

• It uses more memory if a graph is dense.

• because of the references linking the nodes

3

44

0

1

2

3

2

54
null

2

39
null

1

39

0

44

2

83
null

1. Portland

2. Portsmouth

0. Boston3. Worcester

39

54

44

83

3

83
null

0

54

Graph Class
public class Graph {

private class Vertex {
private String id;
private Edge edges; // adjacency list
private Vertex next;
private boolean encountered;
private boolean done;
private Vertex parent;
private double cost;
…

}

private class Edge {
private Vertex start;
private Vertex end;
private double cost;
private Edge next;
…

}

private Vertex vertices;
…

}

The highlighted fields
are shown in the diagram

on the previous page.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 532

Our Graph Representation

• Each Vertex object (shown in blue) stores info. about a vertex.

• including an adjacency list of Edge objects (the purple ones)

• A Graph object has a single field called vertices

• a reference to a linked list of Vertex objects

• a linked list of linked lists!

44

null

54

null

39

39 54

44

null

83

“Boston”

“Portland”

“Portsmouth”

null

“Worcester”

vertices Portland

Portsmouth

BostonWorcester

39

54

44

83

83

null

Traversing a Graph

• Traversing a graph involves starting at some vertex and visiting
all vertices that can be reached from that vertex.

• visiting a vertex = processing its data in some way

• if the graph is connected, all of its vertices will be visited

• We will consider two types of traversals:

• depth-first: proceed as far as possible along a given path
before backing up

• breadth-first: visit a vertex
visit all of its neighbors
visit all unvisited vertices 2 edges away
visit all unvisited vertices 3 edges away, etc.

• Applications:
• determining the vertices that can be reached from some vertex
• web crawler (vertices = pages, edges = links)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 533

Depth-First Traversal

• Visit a vertex, then make recursive calls on all of its
yet-to-be-visited neighbors:

dfTrav(v, parent)
visit v and mark it as visited
v.parent = parent
for each vertex w in v’s neighbors

if (w has not been visited)
dfTrav(w, v)

• Java method:
private static void dfTrav(Vertex v, Vertex parent) {

System.out.println(v.id); // visit v
v.done = true;
v.parent = parent;

Edge e = v.edges;
while (e != null) {

Vertex w = e.end;
if (!w.done)

dfTrav(w, v);
e = e.next;

}
}

Example: Depth-First Traversal from Portland

void dfTrav(Vertex v, Vertex parent) {
System.out.println(v.id);
v.done = true;
v.parent = parent;
Edge e = v.edges;
while (e != null) {

Vertex w = e.end;
if (!w.done)

dfTrav(w, v);
e = e.next;

}
}

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84 1

2

34

5

6

7

8

74

dfTrav(Ptl, null)
w = Pts
dfTrav(Pts, Ptl)

w = Ptl, Bos
dfTrav(Bos, Pts)
w = Wor
dfTrav(Wor, Bos)

w = Pro
dfTrav(Pro, Wor)

w = Wor, Bos, NY
dfTrav(NY, Pro)
w = Pro
return

no more neighbors
return

w = Bos, Con
dfTrav(Con, Wor)
…

For the examples, we’ll
assume that the edges in
each vertex’s adjacency list
are sorted by increasing
edge cost.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 534

Depth-First Spanning Tree

The edges obtained by
following the parent
references form a spanning
tree with the origin of the
traversal as its root.

From any city, we can get to
the origin by following the
roads in the spanning tree.

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84 1

2

34

5

6

7

8

Portland

Portsmouth

Boston

Worcester

Providence Concord Albany

New York

74

Another Example:
Depth-First Traversal from Worcester

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84

• In what order will the cities be visited?

• Which edges will be in the resulting spanning tree?

74

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 535

• To discover a cycle in an undirected graph, we can:

• perform a depth-first traversal, marking the vertices as visited

• if a visited vertex has a neighbor that is (1) not its parent, and
(2) already marked as visited, there must be a cycle

• If no cycles found during the traversal, the graph is acyclic.

• This doesn't work for directed graphs:

• c is a neighbor of both a and b

• there is no cycle

Checking for Cycles in an Undirected Graph
e

b d f h

a c i

cycle

b

a c

Breadth-First Traversal

• Use a queue to store vertices we've seen but not yet visited:
private static void bfTrav(Vertex origin) {

origin.encountered = true;
origin.parent = null;
Queue<Vertex> q = new LLQueue<Vertex>();
q.insert(origin);

while (!q.isEmpty()) {
Vertex v = q.remove();
System.out.println(v.id); // Visit v.

// Add v’s unencountered neighbors to the queue.
Edge e = v.edges;
while (e != null) {

Vertex w = e.end;
if (!w.encountered) {

w.encountered = true;
w.parent = v;
q.insert(w);

}
e = e.next;

}
}

}

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 536

Example: Breadth-First Traversal from Portland
Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84 1

2

45

6

8

3

7

74

Evolution of the queue:
remove insert queue contents

Portland Portland
Portland Portsmouth, Concord Portsmouth, Concord
Portsmouth Boston, Worcester Concord, Boston, Worcester
Concord none Boston, Worcester
Boston Providence Worcester, Providence
Worcester Albany Providence, Albany
Providence New York Albany, New York
Albany none New York
New York none empty

Breadth-First Spanning Tree

Portland

Portsmouth

Boston

Providence

New York

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84 1

2

45

6

8

3

7

Concord

Worcester

Albany

Portland

Portsmouth

Boston

Worcester

Providence Concord Albany

New York

breadth-first spanning tree: depth-first spanning tree:

74

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 537

Another Example:
Breadth-First Traversal from Worcester

Evolution of the queue:
remove insert queue contents

Portland

Portsmouth

Boston

Concord

Albany

Providence

New York

39

54

44

83

4942

185

134

63

84

74

Worcester

Time Complexity of Graph Traversals

• let V = number of vertices in the graph
E = number of edges

• If we use an adjacency matrix, a traversal requires O(V2) steps.

• why?

• If we use adjacency lists, a traversal requires O(V + E) steps.

• visit each vertex once

• traverse each vertex's adjacency list at most once
• the total length of the adjacency lists is at most 2E = O(E)

• for a sparse graph, O(V + E) is better than O(V2)

• for a dense graph, E = O(V2), so both representations are O(V2)

• In the remaining notes, we'll assume an adjacency-list
implementation.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 538

Minimum Spanning Tree

• A minimum spanning tree (MST) has the smallest total cost
among all possible spanning trees.
• example:

• If all edges have unique costs, there is only one MST.
If some edges have the same cost, there may be more than one.

• Example applications:
• determining the shortest highway system for a set of cities
• calculating the smallest length of cable needed to connect

a network of computers

39

54

44

83

39

44

83

Portland

Portsmouth

BostonWorcester

one possible spanning tree
(total cost = 39 + 83 + 54 = 176)

the minimal-cost spanning tree
(total cost = 39 + 54 + 44 = 137)

Portland

Portsmouth

BostonWorcester

54

Building a Minimum Spanning Tree

• Claim: If you divide the vertices into two disjoint subsets A and B,
the lowest-cost edge (va, vb) joining a vertex in A to a vertex in B
must be part of the MST.

Proof by contradiction:
1. Assume we can create an MST (call it T) that doesn’t include (va, vb).
2. T must include a path from va to vb, so it must include

one of the other edges (va', vb') that span A and B,
such that (va', vb') is part of the path from va to vb.

3. Adding (va, vb) to T introduces a cycle.
4. Removing (va', vb') gives a spanning tree with a

lower total cost, which contradicts the original assumption.

va' vb'

vbva

Albany

39

54

44

83

4942
185

134

63

84

74
Portsmouth

Boston

Providence

Portland

Concord

Worcester

New York

example:
subset A = unshaded
subset B = shaded

The 6 bold edges each join
a vertex in A to a vertex in B.

The one with the lowest cost
(Portland to Portsmouth)
must be in the MST.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 539

Prim’s MST Algorithm

• Begin with the following subsets:
• A = any one of the vertices
• B = all of the other vertices

• Repeatedly do the following:

• select the lowest-cost edge (va, vb)
connecting a vertex in A to a vertex in B

• add (va, vb) to the spanning tree

• move vertex vb from set B to set A

• Continue until set A contains all of the vertices.

Example: Prim’s Starting from Concord

• Tracing the algorithm:
edge added set A set B

{Con} {Alb, Bos, NY, Ptl, Pts, Pro, Wor}
(Con, Wor) {Con, Wor} {Alb, Bos, NY, Ptl, Pts, Pro}
(Wor, Pro) {Con, Wor, Pro} {Alb, Bos, NY, Ptl, Pts}
(Wor, Bos) {Con, Wor, Pro, Bos} {Alb, NY, Ptl, Pts}
(Bos, Pts) {Con, Wor, Pro, Bos, Pts} {Alb, NY, Ptl}
(Pts, Ptl) {Con, Wor, Pro, Bos, Pts, Ptl} {Alb, NY}
(Wor, Alb) {Con, Wor, Pro, Bos, Pts, Ptl, Alb} {NY}
(Pro, NY) {Con,Wor,Pro,Bos,Pts,Ptl,Alb,NY} {}

Portland (Ptl)

Portsmouth(Pts)

Boston (Bos)

Concord (Con)

Albany (Alb) Worcester(Wor)

Providence(Pro)

New York (NY)

39

54

44

83

4942

185

134

63

84

74

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 540

MST May Not Give Shortest Paths

• The MST is the spanning tree with the minimal total edge cost.

• It does not necessarily include the minimal cost path
between a pair of vertices.

• Example: shortest path from Boston to Providence
is along the single edge connecting them

• that edge is not in the MST

Portland (Ptl)

Portsmouth(Pts)

Boston (Bos)

Concord (Con)

Albany (Alb) Worcester(Wor)

Providence(Pro)

New York (NY)

39

54

44

83

4942

185

134

63

84

74

Implementing Prim’s Algorithm

• We use the done field to keep track of the sets.

• if v.done == true, v is in set A

• if v.done == false, v is in set B

• We repeatedly scan through the lists of vertices and edges
to find the next edge to add.

 O(EV)

• We can do better!

• use a heap-based priority queue to store the vertices in set B

• priority of a vertex x = –1 * cost of the lowest-cost edge
connecting x to a vertex in set A

• why multiply by –1?

• somewhat tricky: need to update the priorities over time

 O(E log V)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 541

The Shortest-Path Problem

• It’s often useful to know the shortest path from one vertex to
another – i.e., the one with the minimal total cost

• example application: routing traffic in the Internet

• For an unweighted graph, we can simply do the following:

• start a breadth-first traversal from the origin, v

• stop the traversal when you reach the other vertex, w

• the path from v to w in the resulting (possibly partial)
spanning tree is a shortest path

• A breadth-first traversal works for an unweighted graph because:

• the shortest path is simply one with the fewest edges

• a breadth-first traversal visits cities in order according to the
number of edges they are from the origin.

• Why might this approach fail to work for a weighted graph?

Dijkstra’s Algorithm

• One algorithm for solving the shortest-path problem for
weighted graphs was developed by E.W. Dijkstra.

• It allows us to find the shortest path from a vertex v (the origin)
to all other vertices that can be reached from v.

• Basic idea:

• maintain estimates of the shortest paths
from the origin to every vertex (along with their costs)

• gradually refine these estimates as we traverse the graph

• Initial estimates:
path cost

the origin itself: stay put! 0

all other vertices: unknown infinity
5

14

7

A
(0)

C (inf)

B
(inf)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 542

Dijkstra’s Algorithm (cont.)

• We say that a vertex w is finalized if we have found the
shortest path from v to w.

• We repeatedly do the following:

• find the unfinalized vertex w with the lowest cost estimate

• mark w as finalized (shown as a filled circle below)

• examine each unfinalized neighbor x of w to see if there
is a shorter path to x that passes through w

• if there is, update the shortest-path estimate for x

• Example:

5

14

7 5

14

7 5

14

7 (5 + 7 < 14)

A
(0)

C (inf)

B
(inf)

A
(0)

C (5)

B
(14)

A
(0)

C (5)

B
(12)

Another Example: Shortest Paths from Providence

• Initial estimates:

Boston infinity
Worcester infinity
Portsmouth infinity
Providence 0

• Providence has the smallest unfinalized estimate, so we finalize it.

• We update our estimates for its neighbors:

Boston 49 (< infinity)
Worcester 42 (< infinity)
Portsmouth infinity
Providence 0

Portsmouth

BostonWorcester

Providence

54

44

83

4942

Portsmouth

BostonWorcester

Providence

54

44

83

4942

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 543

Boston 49
Worcester 42
Portsmouth infinity
Providence 0

• Worcester has the smallest unfinalized estimate, so we finalize it.
• any other route from Prov. to Worc. would need to go via Boston,

and since (ProvWorc) < (Prov Bos), we can’t do better.

• We update our estimates for Worcester's unfinalized neighbors:
Boston 49 (no change)
Worcester 42
Portsmouth 125 (42 + 83 < infinity)
Providence 0

Shortest Paths from Providence (cont.)

Portsmouth

BostonWorcester

Providence

54

44

83

4942

Portsmouth

BostonWorcester

Providence

54

44

83

4942

Boston 49
Worcester 42
Portsmouth 125
Providence 0

• Boston has the smallest unfinalized estimate, so we finalize it.

• we'll see later why we can safely do this!

• We update our estimates for Boston's unfinalized neighbors:
Boston 49
Worcester 42
Portsmouth 103 (49 + 54 < 125)
Providence 0

Shortest Paths from Providence (cont.)

Portsmouth

BostonWorcester

Providence

54

44

83

4942

Portsmouth

BostonWorcester

Providence

54

44

83

4942

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 544

Boston 49
Worcester 42
Portsmouth 103
Providence 0

• Only Portsmouth is left, so we finalize it.

Shortest Paths from Providence (cont.)
Portsmouth

BostonWorcester

Providence

44

83

4942

54

Finalizing a Vertex

• Let w be the unfinalized vertex with the smallest cost estimate.
Why can we finalize w, before seeing the rest of the graph?

• We know that w’s current estimate is for the shortest path to w
that passes through only finalized vertices.

• Any shorter path to w would have to pass through one of the
other encountered-but-unfinalized vertices, but they are all
further away from the origin than w is!
• their cost estimates may decrease in subsequent stages,

but they can’t drop below w’s current estimate!

origin

other finalized vertices

encountered but
unfinalized
(i.e., it has a
non-infinite estimate)

w

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 545

Pseudocode for Dijkstra’s Algorithm
dijkstra(origin)

origin.cost = 0
for each other vertex v

v.cost = infinity;

while there are still unfinalized vertices with cost < infinity
find the unfinalized vertex w with the minimal cost
mark w as finalized

for each unfinalized vertex x adjacent to w
cost_via_w = w.cost + edge_cost(w, x)
if (cost_via_w < x.cost)

x.cost = cost_via_w
x.parent = w

• At the conclusion of the algorithm, for each vertex v:
• v.cost is the cost of the shortest path from the origin to v
• if v.cost is infinity, there is no path from the origin to v
• starting at v and following the parent references yields

the shortest path

Evolution of the cost estimates (costs in bold have been finalized):

Example: Shortest Paths from Concord

39

44

83

4942

185

134

63

84

74
54

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

197197197197197infinfAlbany
7474infBoston

0Concord
290290290infinfinfinfinfNew York

848484infPortland
123123128146infinfPortsmouth

105105105infinfProvidence
63infWorcester

Note that the Portsmouth estimate was improved three times!

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 546

Another Example: Shortest Paths from Worcester

Evolution of the cost estimates (costs in bold have been finalized):

Albany
Boston

Concord
New York
Portland

Portsmouth
Providence
Worcester

Portland

Portsmouth

Boston

Concord

Albany Worcester

Providence

New York

39

54

44

83

4942

185

134

63

84

74

Implementing Dijkstra's Algorithm

• Similar to the implementation of Prim's algorithm.

• Use a heap-based priority queue to store the unfinalized vertices.

• priority = ?

• Need to update a vertex's priority whenever we update its
shortest-path estimate.

• Time complexity = O(ElogV)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 547

Topological Sort

• Used to order the vertices in a directed acyclic graph (a DAG).

• Topological order: an ordering of the vertices such that,
if there is directed edge from a to b, a comes before b.

• Example application: ordering courses according to prerequisites

• a directed edge from a to b indicates that a is a prereq of b

• There may be more than one topological ordering.

MATH E-10

CSCI E-160

CSCI E-119CSCI E-50b

MATH E-104

CSCI E-215

CSCI E-162

CSCI E-170

CSCI E-124

CSCI E-220

CSCI E-234

CSCI E-251

CSCI E-50a

Topological Sort Algorithm

• A successor of a vertex v in a directed graph = a vertex w such
that (v, w) is an edge in the graph ()

• Basic idea: find vertices with no successors and work backward.

• there must be at least one such vertex. why?

• Pseudocode for one possible approach:
topolSort

S = a stack to hold the vertices as they are visited
while there are still unvisited vertices

find a vertex v with no unvisited successors
mark v as visited
S.push(v)

return S

• Popping the vertices off the resulting stack gives
one possible topological ordering.

wv

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 548

Topological Sort Example

MATH E-10

CSCI E-160

CSCI E-119CSCI E-50b

MATH E-104

CSCI E-215

CSCI E-162

CSCI E-124

CSCI E-50a

Evolution of the stack:

push stack contents (top to bottom)
E-124 E-124
E-162 E-162, E-124
E-215 E-215, E-162, E-124
E-104 E-104, E-215, E-162, E-124
E-119 E-119, E-104, E-215, E-162, E-124
E-160 E-160, E-119, E-104, E-215, E-162, E-124
E-10 E-10, E-160, E-119, E-104, E-215, E-162, E-124
E-50b E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124
E-50a E-50a, E-50b, E-10, E-160, E-119, E-104, E-215, E-162, E-124

one possible topological ordering

Another Topological Sort Example

Evolution of the stack:

push stack contents (top to bottom)

C

F

B

D

HG

A

E

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 549

Traveling Salesperson Problem (TSP)

• A salesperson needs to travel to a number of cities to visit clients,
and wants to do so as efficiently as possible.

• A tour is a path that:

• begins at some starting vertex

• passes through every other vertex once and only once

• returns to the starting vertex

• TSP: find the tour with the lowest total cost

York

Oxford

London

Cambridge

Canterbury

180

132 62105

20362

55

155
95

257

TSP for Santa Claus

• Other applications:

• coin collection from phone booths

• routes for school buses or garbage trucks
• minimizing the movements of machines in automated

manufacturing processes

• many others

source: http://www.tsp.gatech.edu/world/pictures.html

A “world TSP” with
1,904,711 cities.

The figure at right
shows a tour with

a total cost of
7,516,353,779

meters – which is
at most 0.068%
longer than the

optimal tour.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 550

Solving a TSP: Brute-Force Approach

• Perform an exhaustive search of all possible tours.

• represent the set of all possible tours as a tree

• The leaf nodes correspond to possible solutions.
• for n cities, there are (n – 1)! leaf nodes in the tree.
• half are redundant (e.g., L-Cm-Ct-O-Y-L = L-Y-O-Ct-Cm-L)

• Problem: exhaustive search is intractable for all but small n.
• example: when n = 14, ((n – 1)!) / 2 = over 3 billion

Cm Ct O Y

Ct O Y Cm O Y Cm Ct Y Cm Ct O

Y O Y Ct O Ct Y O Y Cm O Cm Y Ct Y Cm Ct Cm O Ct O Cm Ct Cm

L

L L

O Y Ct Y Ct O O Y Cm Y Cm O Ct Y Cm Y Cm Ct Ct O Cm O Cm Ct

Solving a TSP: Informed Search

• Focus on the most promising paths through the tree
of possible tours.

• use a function that estimates how good a given path is

• Better than brute force, but still exponential space and time.

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 551

Algorithm Analysis Revisited

• Recall that we can group algorithms into classes (n = problem size):
name example expressions big-O notation
constant time 1, 7, 10 O(1)
logarithmic time 3log10n, log2n + 5 O(log n)
linear time 5n, 10n – 2log2n O(n)
n log n time 4n log2n, n log2n + n O(n log n)
quadratic time 2n2 + 3n, n2 – 1 O(n2)
nc (c > 2) n3 - 5n, 2n5 + 5n2 O(nc)
exponential time 2n, 5en + 2n2 O(cn)
factorial time (n – 1)!/2, 3n! O(n!)

• Algorithms that fall into one of the classes above the dotted line
are referred to as polynomial-time algorithms.

• The term exponential-time algorithm is sometimes used
to include all algorithms that fall below the dotted line.

• algorithms whose running time grows as fast or faster than cn

Classifying Problems

• Problems that can be solved using a polynomial-time algorithm
are considered “easy” problems.

• we can solve large problem instances in a
reasonable amount of time

• Problems that don’t have a polynomial-time solution algorithm
are considered “hard” or "intractable" problems.

• they can only be solved exactly for small values of n

• Increasing the CPU speed doesn't help much for
intractable problems:

CPU 2
CPU 1 (1000x faster)

max problem size for O(n) alg: N 1000N
O(n2) alg: N 31.6 N
O(2n) alg: N N + 9.97

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 552

Dealing With Intractable Problems

• When faced with an intractable problem, we resort to
techniques that quickly find solutions that are "good enough".

• Such techniques are often referred to as heuristic techniques.
• heuristic = rule of thumb
• there's no guarantee these techniques will produce

the optimal solution, but they typically work well

Take-Home Lessons

• Computer science is the science of solving problems
using computers.

• Java is one programming language we can use for this.

• The key concepts transcend Java:

• flow of control

• variables, data types, and expressions

• conditional execution

• procedural decomposition

• definite and indefinite loops

• recursion

• console and file I/O

• memory management (stack, heap, references)

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 553

Take-Home Lessons (cont.)

• Object-oriented programming allows us to capture the
abstractions in the programs that we write.

• creates reusable building blocks

• key concepts: encapsulation, inheritance, polymorphism

• Abstract data types allow us to organize and manipulate
collections of data.

• a given ADT can be implemented in different ways

• fundamental building blocks: arrays, linked nodes

• Efficiency matters when dealing with large collections of data.

• some solutions can be much faster or more space efficient

• what’s the best data structure/algorithm for your workload?

• example: sorting an almost sorted collection

Take-Home Lessons (cont.)

• Use the tools in your toolbox!

• interfaces, generic data structures

• lists/stacks/queues, trees, heaps, hash tables

• recursion, recursive backtracking, divide-and-conquer

• Use built-in/provided collections/interfaces:
• java.util.ArrayList<T> (implements List<T>)

• java.util.LinkedList<T> (implements List<T> and Queue<T>)

• java.util.Stack<T>

• java.util.TreeMap<K, V> (a balanced search tree)

• java.util.HashMap<K, V> (a hash table)

• java.util.PriorityQueue<T> (a heap)

• But use them intelligently!

• ex: LinkedList maintains a reference to the last node in the list

• list.add(item, n) will add item to the end in O(n) time

• list.addLast(item) will add item to the end in O(1) time!

implement
Map<K, V>

CSCI S-111, Summer 2025 David G. Sullivan, Ph.D. 554

	unit1-1
	unit1-2
	unit1-3
	unit2-1
	unit2-2
	unit3-1
	unit3-2
	unit3-3
	unit3-4
	unit4-1
	unit4-2
	unit4-3
	unit5-1
	unit5-2
	unit6-1
	unit6-2
	unit7-1
	unit7-2
	unit8-1
	unit8-2
	unit9-1
	unit9-2
	unit9-3
	unit9-4
	unit10
	Blank Page

